Path (or cycle)-trees with Graph Equations involving Line and Split Graphs

H. P. Patil* and V. Raja†

Abstract

H-trees generalize the existing notions of trees, higher dimensional trees and k-ctrees. The characterizations and properties of both P_k-trees for $k \geq 4$ and C_n-trees for $n \geq 5$ and their hamiltonian property, dominations, planarity, chromatic and b-chromatic numbers are established. The conditions under which P_k-trees for $k \geq 3$ (resp. C_n-trees for $n \geq 4$), are the line graphs are determined. The relationship between path-trees and split graphs are developed.

Keywords: Cycle, Path, Tree, Connected graph, Coloring, Line graph, Split graph

Mathematics Subject Classification (2010): 05C10

1. Introduction

We follow Harary[5] for all terminologies related to graphs. Given a graph G, $V(G)$ and $E(G)$ denote the sets of vertices and edges of G, respectively and \bar{G} denotes the complement of G. P_n and C_n denote a path of n vertices and cycle of n vertices, respectively. For any connected graph G, nG denotes the graph with n components, each being isomorphic to G. For any two disjoint graphs G and H, $G+H$ denotes the join of G and H. [5] A tree is a connected graph without cycles. A star is a tree $K_{1,n}$ for $n \geq 1$. A graph G is n-connected if the removal of any m vertices for $0 \leq m < n$, from G results in neither a disconnected graph nor a trivial graph. A graph G is triangulated if every cycle of length strictly greater than 3 possesses a chord; that is, an edge joining two nonconsecutive vertices of the cycle. Equivalently, G does not
contain an induced subgraph isomorphic to C_n for $n > 3$. A graph G is n-degenerate for $n \geq 0$ if every induced subgraph of G has a vertex of degree at most n.

2. Structure of H-trees

Notice that trees are equivalently defined by the following recursive construction rule:

Step 1. A single vertex K_1 is a tree.

Step 2. Any tree of order $n \geq 2$, can be constructed from a tree Q of order $n - 1$ by inserting an n^{th}-vertex and joining it to any vertex of Q.

In [10], the above tree-construction procedure is extended by allowing the base to be any graph. It is natural that a connected graph, which is not a tree possesses a structure that reflects like a tree and its recursive growth starts from any graph. In other words, for any given graph H, there is associated another graph, we call H-tree that is constructed as follows.

Definition 2.1. Let H be any graph of order k. An H-tree, denoted by $G(H)$, is a graph that can be obtained by the following recursive construction rule:

Step 1. H is the smallest H-tree.

Step 2. To an H-tree $G(H)$ of order $n \geq k$, insert an $(n + 1)^{th}$-vertex and join it to any set of k distinct vertices: $v_{i_1}, v_{i_2}, \ldots, v_{i_k}$ of $G(H)$, so that the induced subgraph $\langle v_{i_1}, v_{i_2}, \ldots, v_{i_k}\rangle$ is isomorphic to H.

For example, $K_{1,3}$-tree of order 8 is shown in Figure 1.

Remark 2.2. 1. The notion of K_1-trees is the usual concept of trees.
2. The notion of K_2-trees is equivalent to the notion of 2-trees, which is studied in [7]. Actually, they form a special subclass of planar graphs. In fact, the maximal outerplanar graphs are the only outerplanar K_2-trees.
3. The notion of K_k-trees is equivalent to the notion of k-trees[2, 7] and they form actually a family of k-connected, triangulated and K_{k+2}-free graphs of order $\geq k + 1$.
4. The notion of K_k-trees is equivalent to the concept of k-ctrees[9] and they form a family of k-degenerate and triangle-free graphs of order $p \geq 2k$ and size $k(p - k)$.

The development in the class of H-trees is motivated by the notion of k-trees[2, 7] or k-ctrees[9] and their applications in the area of reliability of communication networks, have generated much interest from an algorithmic (or theoretical) point of view.
Definition 2.3. A graph F is called a H-tree if there exists a graph H such that F is isomorphic to $G(H)$.

Equivalently, a H-tree $G(H)$ of order $\geq k + 1$, (where $|H| = k$) can be reduced to H by sequentially removing the vertices of degree k from $G(H)$.

For a vertex v of a graph G, a neighbour of v is a vertex adjacent to v in G. The neighbourhood $N(v)$ of v is the set of all neighbours of v.

The following result is a simple characterization of H-trees involving their hereditary subgraphs and is simply the restatement of Definition 2.1.

Proposition 2.4. Let H be any graph of order k. Then G is a H-tree of order $\geq k + 1$ if and only if G contains a vertex v of degree k such that $N(v)$ induces H in G and $G - v$ is a H-tree.

An immediate consequence of the above result is the following corollary.

Corollary 2.5. For any graph H of order k and size m, let G be a H-tree of order $p \geq k$. Then

1. $|E(G)| = m + k(p - k)$.
2. G contains a subgraph isomorphic to $H + 2K_1$, provided $p \geq k + 2$.
3. If H has t triangles, then the number of triangles in G is $t + m(p - k)$.
3. Properties and Characterizations

Definition 3.1. A graph F is called a P_k-tree (or path-tree) if there exists a path P_k of order k such that F is isomorphic to $G(P_k)$.

We define similarly, a C_k-tree (or cycle-tree). Generally speaking, every P_k (resp. C_k)-tree of order $\geq k + 1$, can be reduced to P_k (resp. C_k) by sequentially removing the vertices of degree k from P_k (resp. C_k)-tree.

In [10], the following general open-problem is proposed for further research.

Open Problem 1. Characterize the class of star-trees $G(K_{1,n})$ for $n \geq 2$.

We now characterize path-trees $G(P_k)$ for $k \geq 4$.

Theorem 3.2. A graph G of order $p \geq k + 1$, is a P_k-tree if and only if G is isomorphic to $P_k + (p-k)K_1$.

Proof. Suppose that G is isomorphic to $P_k + (p-k)K_1$. Then G contains the vertices $v_1, v_2, \ldots, v_{p-k}$, each of degree k such that $N(v_i)$ induces P_k in G for $1 \leq i \leq p-k$. By repeated removal of each vertex v_i from G reduces to P_k. Hence, G is a P_k-tree.

We prove the converse by induction on p.

If $p = k + 1$, then by the recursive definition, a P_k-tree G of order $k + 1$, is isomorphic to $P_k + K_1$, which is obviously true.

Assume that the result is true for any positive integer $m < p$. Next, we consider a P_k-tree of order p. By Proposition 2.4 with $H = P_k$, G contains a vertex v of degree k such that $N(v)$ induces P_k in G and $G - v$ is again a P_k-tree of order $p - 1$. By induction hypothesis, $G - v$ is isomorphic to $P_k + (p-k-1)K_1$. Consequently, $G - v$ is the join of two disjoint graphs: P_k and $I = (p-k-1)K_1$.

Suppose that v is adjacent to each vertex of P_k in G. Then the result follows immediately. Otherwise, v is adjacent to at least one vertex of I in G. Moreover, $deg(v) = k$ in G. There exist two disjoint nonempty sets: A and B such that $A \subseteq P_k$; $B \subseteq I$ with $A \cup B = N(v)$ and $|A| + |B| = k$. (Figure 2) We discuss four cases, depending on the cardinalities of A and B:

Case 1. $|A| = k - 1$ and $|B| = 1$. Since $k \geq 4$, $\langle A \rangle$ contains at least one edge, say $e = xy$. Then for any vertex u of B, we have a triangle $uxyu$ in $N(v)$, which is not possible.

Case 2. $|A| = k - 2$ and $|B| = 2$. Immediately, we have $|A| \geq 2$ (because $k \geq 4$).

There are two possibilities for discussion.

2.1. Suppose that A is independent. Certainly, there are two non-adjacent vertices x and y in A. Let us consider $B = \{a, b\}$. Immediately,
\[\langle x, y, a, b \rangle \] is isomorphic to \(C_4 \) and it appears in \(\langle N(v) \rangle \). This is impossible.

2.2. Suppose that \(A \) is non-independent. Then \(\langle A \rangle \) contains at least one edge. In this situation, Case 1 repeats.

Case 3. \(|A| = 1 \) and \(|B| = k - 1 \). It is easy to see that \(\langle N(v) \rangle \) is a star \(K_1 + \overline{K}_{k-1} \) and this is not possible.

Case 4. \(|A| \geq 2 \) and \(|B| \geq 3 \).

We discuss two possibilities, depending on \(A \):

4.1. Suppose that \(A \) is non-independent. Then Case 1 repeats.

4.2. Suppose that \(A \) is independent. Then Case 2 repeats.

In each of the above cases, we see that \(\langle N(v) \rangle \) is not isomorphic to \(P_k \). This is a contradiction.

In [7], it is shown that the notion of \(C_3 \)-trees are equivalent to the family of 3-trees and it is also proved that this class of graphs are equivalent to the family of 3-connected, triangulated and \(K_5 \)-free graphs of order \(\geq 4 \). Further, it is noticed that the graphs in the class of \(C_4 \)-trees have highly irregular structure. In fact, it is hard to find a characterization of \(C_4 \)-trees. We first propose the following problem for further research.

Open Problem 2. Characterize the class of \(C_4 \)-trees.

The following theorem is a characterization of \(C_k \)-trees for \(k \geq 5 \) and its proof is quite similar to that of Theorem 3.2, with the replacement of \(P_k \) by \(C_k \).

Theorem 3.3. A graph \(G \) of order \(p \geq k + 1 \), is a \(C_k \)-tree if and only if \(G \) is isomorphic to \(C_k + (p-k)K_1 \).
The immediate consequence of theorems 3.2 and 3.3 is the following corollary.

Corollary 3.4.

1. \(\chi(G\langle P_k \rangle) = 3 \) for \(k \geq 4 \).
2. \(\chi(G\langle C_k \rangle) = \begin{cases} 3 & \text{if } k \geq 6 \text{ and is even.} \\ 4 & \text{if } k \geq 5 \text{ and is odd.} \end{cases} \)

Proposition 3.5. Let \(G\langle H \rangle \) be a \(H \)-tree of order \(p \geq k + 1 \), where \(H \) is either \(P_k \), \(k \geq 4 \) or \(H \) is \(C_k \), \(k \geq 5 \).

1. \(G\langle H \rangle \) is hamiltonian if and only if \(p \geq 2k \).
2. \(G\langle H \rangle \) is planar if and only if \(p \leq k + 2 \).

Proof. By theorems 3.2. and 3.3, \(G\langle H \rangle \) is isomorphic to \(H + (p - k)K_1 \).

1. Assume that \(G\langle H \rangle \) is hamiltonian and on contrary, \(p \geq 2k + 1 \). Since \(|V(H)| = k \), we have \(|(p - k)K_1| = k + 1 \). Consider \(S = V(H) \). Then \(G - S \) is isomorphic to \((p - k)K_1 \) and hence the number of components of \((G - S) \geq k + 1 \). This implies that \(G\langle H \rangle \) is not hamiltonian. So, \(p \leq 2k \).

To prove the converse, it is sufficient to obtain a Hamilton-cycle in \(G\langle H \rangle \), where \(G\langle H \rangle \) is isomorphic to \(H + tK_1 \) for \(1 \leq t \leq k \). Let \(V(H) = \{u_1, u_2, \ldots, u_k\} \) and \(V(tK_1) = \{v_1, v_2, \ldots, v_t\} \). Since \(k \geq t \), we have \((k - t) = m \geq 0 \). Immediately, a Hamilton cycle: \(u_1, u_2, \ldots, u_{m+1}, v_1, u_{m+2}, v_2, u_{m+3}, \ldots, v_{t-1}, u_k, v_t, u_1 \) appears in \(G\langle H \rangle \) (Figure 3). Hence, \(H \)-tree is hamiltonian.

2. Assume that \(G\langle H \rangle \) is planar and on contrary, \(p \geq k + 3 \). Immediately, we observe that \((H + 3K_1) \subseteq G\langle H \rangle \). Since \(K_{3,3} \) appears as an induced subgraph in \((H + 3K_1) \), it follows that \(K_{3,3} \) appears as a forbidden subgraph in \(G\langle H \rangle \) and hence by Kuratowski theorem, \(G\langle H \rangle \) is not planar. This is a contradiction to our assumption. Hence, \(p \leq k + 2 \).

It is easy to prove the converse. \(\square \)
4. Dominations and b-coloring

For any graph G, $\gamma(G)$ denotes the domination number of G. A Roman domination function (in short, RDF) on G is a function $f : V(G) \rightarrow \{0, 1, 2\}$ such that every vertex u for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$. The weight of this function is $f(V(G)) = \sum_{u \in V(G)} f(u)$. The minimum weight of a Roman dominating function on G is the Roman domination number of G and is denoted by $\gamma_R(G)$.[3] The following result gives both the domination and Roman domination numbers of path-trees and cycle-trees and its proof is obvious.

Proposition 4.1. Let $G(H)$ be a H-tree of order $p \geq k + 1$, where H is either P_k for $k \geq 4$ or C_k for $k \geq 5$. Then

1. $\gamma(G(H)) = \begin{cases} 1 & \text{if } p = k + 1. \\ 2 & \text{otherwise}. \end{cases}$

2. $\gamma_R(G(H)) = \begin{cases} 2 & \text{if } p = k + 1. \\ 3 & \text{if } p = k + 2. \\ 4 & \text{otherwise}. \end{cases}$

The b-chromatic number $b(G)$ of a graph G is the largest integer k such that G admits a proper k-coloring in which every color class has a representative adjacent to at least one vertex in each of the other color classes. Such a coloring of G is a b-coloring of G[6] It is shown in [6] that for any path P_k and a cycle C_k for $k \geq 5$, $b(P_k) = b(C_k) = 3$.

Next, we determine the b-chromatic number of the path-trees and cycle-trees. For this, we establish the following lemma.

Lemma 4.2. In any b-coloring of a graph $H + (p - k)K_1$, where H is any graph of order k and $p \geq k + 1$, all the vertices of $(p - k)K_1$ receive the same color.

Proof. Let u_1, u_2, \ldots, u_k, be the vertices of H and let $v_1, v_2, \ldots, v_{p-k}$ be the vertices of I, where $I = (p - k)K_1$. If $p = k + 1$, then $|I| = 1$. The result obvious.

If $p \geq k + 2$, then $|I| \geq 2$. If possible, then assume that in some b-coloring of $H + I$, the vertices of I receive $q \geq 2$ different colors, say c_1, c_2, \ldots, c_q. Since I is independent and each vertex of I is adjacent to all vertices of H, it follows that there is no color dominating vertex corresponding to the colors $c_i \ (1 \leq i \leq q)$ in $H + I$. This is not possible in any b-coloring of $H + I$, because each color class has at least one color dominating vertex. \qed

Theorem 4.3. Let $G(H)$ be a H-tree of order $p \geq k + 1$, where H is either a path P_k for $k \geq 4$ or a cycle C_k for $k \geq 5$. Then
1. \(b(G(P_k)) = \begin{cases} 3 & \text{if } k = 4, \\ 4 & \text{otherwise}. \end{cases} \)

2. \(b(G(C_k)) = 4. \)

Proof. By theorems 3.2, and 3.3, we have \(G(H) \) is isomorphic to \(H + I \), where \(I = (p - k)K_1 \). We discuss two cases depending on \(k \) in (1):

Case 1. Assume that \(k = 4 \). Since \(b(P_k) = 2 \) and from Lemma 4.2, all the vertices of \(I \) receive a single color, it follows that \(b(G(P_k)) \leq 3 \). To achieve the lower bound, color \(P_k \) properly by using the colors 1 and 2 and next, assign the color 3 to each vertex of \(I \). Thus, we have \(b(G(P_k)) = 3 \).

Case 2. Assume that \(k \geq 5 \). Since it is shown in [6] that \(b(P_k) = 3 \) and all the vertices of \(I \) receive a single color, it follows that \(b(G(P_k)) \leq 4 \). To achieve the lower bound, color \(P_k \) properly by all three colors 1, 2 and 3 and next, assign color 4 to each vertex of \(I \). Thus, we have \(b(G(P_k)) = 4 \).

For (2), since \(b(C_k) = 3 \) and all the vertices of \(I \) receive a single color, it follows that \(b(G(C_k)) \leq 4 \). To achieve the lower bound, color \(C_k \) properly by using all three colors 1, 2, 3, and next, assign the color 4 to each vertex of \(I \). Thus, we have \(b(G(C_k)) = 4 \).

5. Line graphs and path (or cycle)-trees

In this section, we determine all the graphs, whose line graphs are either \(P_k \)-trees or \(C_k \)-trees for \(k \geq 3 \). We begin with the definition of line graph. The line graph \(L(G) \) of a graph \(G \), is the graph whose vertex set is the edge set of \(G \) and in which two vertices are adjacent, if the corresponding edges are adjacent in \(G \).[5] Beineke [5, p.75] has shown that a graph is a line graph if and only if it has none of nine specified graphs as induced subgraphs, including \(K_1; 3 \), \((K_1 + 2K_2) + 2K_1 \) and \((C_5 + K_1) \). The problem of obtaining all the graphs, whose line graphs are \(P_k \)-trees for \(1 \leq k \leq 2 \), is already done in [8, 9] and therefore, we solve the problem for \(k \geq 3 \).

Proposition 5.1. A \(P_k \)-tree of order \(p \geq k + 1 \); \(k \geq 3 \), is the line graph of a graph \(G \) if and only if both the following conditions hold:

1. \(k = 3 \); \(G \) is either \((K_2 + 2K_1) \) or a triangle with exactly one end-edge at some vertex.
2. \(k = 4 \); \(G \) is a triangle with exactly two end-edges, one at some vertex.

Proof. We first show that \(G \) is connected. If not, then \(L(G) \) is disconnected and by Definition 2.1 with \(H = P_k, L(G) \) is not a \(P_k \)-tree. This is a contradiction. Since \(L(G) \) is a \(P_k \)-tree of order \(p \geq k + 1 \) and \(k \geq 3 \), by Theorem 3.2, \(P_k \)-tree \(T \) is isomorphic to \(P_k + (p - k)K_1 \). Suppose \(k \geq 5 \). Then \(T \) contains a subgraph \(F \) isomorphic to \(P_5 + K_1 \). Since
$F \subseteq T$ and T is $L(G)$, immediately a forbidden subgraph isomorphic to $K_{1,3}$ appears in $L(G)$. This is impossible and it shows that $k \leq 4$. Thus, either $k = 3$ or $k = 4$.

Case 1. Assume that $k = 3$. Further, we observe that $p \leq 5$; since otherwise, $P_3 + 3K_1$ appears in T and $L(G)$ contains a forbidden subgraph $K_{1,3}$.

We discuss two possibilities depending on p.

1.1. If $p = 4$, then $L(G) = P_3 + K_1$ and hence G is isomorphic to triangle with exactly one end-edge at some vertex.

1.2. If $p = 5$, then $L(G) = P_3 + 2K_1$ and therefore, G is isomorphic to $K_2 + 2K_1$.

Case 2. Assume that $k = 4$. Moreover, we observe that $p = 5$; since otherwise, $P_4 + 2K_1$ appears in T and $L(G)$ contains a forbidden subgraph isomorphic to $(K_1 \cup K_2) + 2K_1$. Since $k = 4$ and $p = 5$, it follows that $L(G) = P_4 + K_1$ and hence G is isomorphic to a triangle with exactly two end-edges, one at some vertex.

It is easy to prove the converse. \qed

Finally, we determine all the graphs whose line graphs are C_k-trees for $k \geq 3$. However for $k = 3$, this problem is solved in [8] and now we solve this problem, for $k \geq 4$.

Proposition 5.2. There are only two graphs whose line graphs are C_k-trees for $k \geq 4$. These graphs are $K_2 + 2K_1$ and K_4.

Proof. Suppose that $L(G)$ is a C_k-tree of order $p \geq k+1$; $k \geq 4$. Clearly, G is connected. Assume that $k \geq 5$. Then $p \geq 6$ and immediately, $L(G)$ contains a subgraph F isomorphic to $C_k + K_1$. There are two possibilities, depending on k :

1. If $k = 5$, then $F = C_5 + K_1$ is a forbidden subgraph of $L(G)$.

2. If $k \geq 6$, then F contains a forbidden subgraph isomorphic to $K_{1,3}$.

In either case, we arrive at a contradiction. Hence, $k = 4$. Furthermore, we observe that $p \leq 6$; since otherwise, $L(G)$ contains a subgraph F isomorphic to $C_4 + 3K_1$. It is easy to check that a forbidden subgraph isomorphic to $K_{1,3}$ appears in F and hence in $L(G)$.

Next, we discuss two possibilities depending on p.

1. If $p = 5$, then $L(G) = C_4 + K_1$ and hence $G = K_2 + 2K_1$.

2. If $p = 6$, then $L(G) = C_4 + 2K_1$ and hence $G = K_4$. \qed

6. Relation between P_k-trees and split graphs

A nonempty subset S of $V(G)$ is an independent set $I(G)$ in a graph G if no two vertices of S are adjacent in G. A nonempty subset K of $V(G)$ is a complete set $K(G)$ in G if every two vertices of K are adjacent in G.

The concept of a split graph appears in [4]. A split graph is defined to be a graph G, whose vertex set $V(G)$ can be partitioned into a
complete set \(K \) and an independent set \(I \) such that \(G = (K \cup I \cup (K, I)) \), where \((K, I) \) denotes a set of edges \(xy \) for \(x \in K \) and \(y \in I \). Notice that the partition \(V(G) = K \cup I \) of a split graph \(G \) will not be unique always. Let us denote a split graph \(G \) with its bipartition \((K, I) \) by \(G(K, I) \). In [4, Theorem 6.3], it is proved that a graph \(G \) is a split graph if and only if \(G \) contains no induced subgraph isomorphic to \(2K_2, C_4 \) or \(C_5 \).

Now, we obtain the conditions under which \(P_1 \)-trees to be the split graphs. We begin with the following definitions.

Definition 6.1. A double-star \(D(m,n) \) for \(m, n \geq 1 \) is a tree, obtained from a complete graph \(K_2 \), by joining \(m \) isolated vertices to one end of \(K_2 \) and \(n \) isolated vertices to the other end of \(K_2 \).

Definition 6.2. For any triangle \(K_3 \) with vertices \(a, b \) and \(c \), there are three special families of \(K_2 \)-trees as follows:

1. A \(m \)-graph for \(m \geq 1 \), denoted by \(T(m) \), is a \(K_2 \)-tree, obtained from \(K_3 \), by joining \(m \) isolated vertices to both \(a \) and \(b \) of \(K_3 \).

2. A \((m,n) \)-graph for \(m,n \geq 1 \), denoted by \(T(m,n) \), is a \(K_2 \)-tree, obtained from \(T(m) \), by joining \(n \) isolated vertices to both \(b \) and \(c \) of \(K_3 \) in \(T(m) \).

3. A \((m,n,k) \)-graph for \(m,n,k \geq 1 \), denoted by \(T(m,n,k) \), is a \(K_2 \)-tree, obtained from \(T(m,n) \), by joining \(k \) isolated vertices to both \(a \) and \(c \) of \(K_3 \) in \(T(m,n) \).

Proposition 6.3. A \(P_1 \)-tree of order \(p \geq k + 1 \), is a split graph if and only if the following statements hold:

1. \(k = 1 \). There are only two split graphs:
 a) \(G(K_1, \bar{K}_{p-1}) \) is a star \(K_1 + \bar{K}_{p-1} \).
 b) \(G(K_2, \bar{K}_{p-2}) \) is a double-star \(D(m,n) \), where \((m+n+2) = p \); \(m, n \geq 1 \).

2. \(k = 2 \). There are only two split graphs:
 a) \(G(K_2, \bar{K}_{p-2}) \) is a \(K_2 \)-tree \(K_2 + \bar{K}_{p-2} \).
 b) \(G(K_3, \bar{K}_{p-3}) \) is one of the following three \(K_2 \)-trees: \(T(n_1) \) for \(n_1 + 3 = p \); \(T(n_1,n_2) \) for \(n_1 + n_2 + 3 = p \) and \(T(n_1,n_2,n_3) \) for \(n_1 + n_2 + n_3 + 3 = p \).

3. \(k = 3 \). Either \(G(K_2, \bar{K}_2) \) or \(G(K_3, K_1) \) is a \(P_3 \)-tree \(P_3 + K_1 \).

4. \(k = 4 \). \(G(K_3, \bar{K}_2) \) is a \(P_4 \)-tree \(P_4 + K_1 \).

Proof. Suppose that a \(P_1 \)-tree of order \(p \geq k + 1 \), is a split graph of the form \(G(K, I) \). Immediately, \(k \leq 4 \); since otherwise, \(2K_2 \) appears as a forbidden subgraph in \(P_k \).

We discuss three cases, depending on \(k \).

Case 1. Assume that \(k = 1 \). Then \(P_k \) is \(K_1 \). Clearly, a \(P_k \)-tree \(T \) is a nontrivial tree. In this case, the star \(K_1 + \bar{K}_{p-1} \) and double-stars \(D(m,n) \) with \((m+n = p-2) ; \ m, n \geq 1 \), are the only split graphs of the
form: \(G(K_1, \bar{K}_{p-1})\) and \(G(K_2, \bar{K}_{p-2})\), respectively; since otherwise, \(2K_2\) appears immediately as a forbidden subgraph in \(T\).

Case 2. Assume that \(k = 2\). Then \(P_k\) is \(K_2\). Clearly, the notion of \(K_2\)-tree is equivalent to the notion of 2-tree.[7] By (3) of Remark 2.2 (with \(k = 2\)), a \(K_2\)-tree \(T\) is 2-connected, triangulated and \(K_4\)-free. Consequently, the complete sets \(K\) in \(T\) are the only \(K_2\) and \(K_3\).

Next, there are two possibilities to discuss on \(K\).

2.1. If \(K = K_2\), then \(T\) is isomorphic to \(K_2 + \bar{K}_{p-2}\), is the split graph of the type:

\[G(K_2; \bar{K}_{p-2})\]

2.2. If \(K = K_3\), then one of the following types of \(K_2\)-trees:

\[T(n_1), \text{with } n_1 + 3 = p; T(n_1, n_2) \text{ with } (n_1 + n_2 + 3) = p \text{ and } T(n_1, n_2, n_3) \text{ with } (n_1 + n_2 + n_3 + 3) = p,\]

is a split graph of the form: \(G(K_3, \bar{K}_{p-3})\).

Case 3. Assume \(k\) such that \((3 \leq k \leq 4)\). Since \(k \geq 3\), \(P_k\) contains \(P_3\) as an induced subgraph. By (2) of Corollary 2.5, a \(P_k\)-tree of order \(p \geq k + 2\), contains a subgraph isomorphic to \(P_k + \bar{K}_2\). Immediately, a forbidden subgraph \(C_4\) appears in \(P_3 + \bar{K}_2\) and hence, in \(P_k + \bar{K}_2\). This is a contradiction and hence proves that \(p = k + 1\). Now, we discuss two possibilities.

3.1. \(k = 3\). Then both \(K_3\) and \(K_4\) are the complete sets in a \(P_3\)-tree of order 4. This shows that \(P_3\)-tree \(P_3 + K_1\) is a split graph either of the type: \(G(K_2, \bar{K}_2)\) or \(G(K_3, K_1)\).

3.2. \(k = 4\). Then \(K_3\) is the only complete set in a \(P_4\)-tree of order 5. This shows that \(P_4\)-tree \(P_4 + K_1\) is a split graph of the type \(G(K_3, \bar{K}_2)\).

It is easy to prove the converse. \(\square\)

Open Problem 3. Determine the conditions under which the \(C_k\)-trees for \(k \geq 3\), are the split graphs.

7. Acknowledgment

Research was supported by UGC-SAP DRS-II(2015) for the first author. Research was supported by UGC-BSR-SRF, Research Fellowship, Government of India, New Delhi, India for the second author.

References

