

Path (or cycle)-trees with Graph Equations involving Line and Split Graphs

H. P. Patil*and V. Raja[†]

Abstract

H-trees generalizes the existing notions of trees, higher dimensional trees and *k*-ctrees. The characterizations and properties of both P_k -trees for $k \ge 4$ and C_n -trees for $n \ge 5$ and their hamiltonian property, dominations, planarity, chromatic and *b*-chromatic numbers are established. The conditions under which P_k -trees for $k \ge 3$ (resp. C_n -trees for $n \ge 4$), are the line graphs are determined. The relationship between path-trees and split graphs are developed.

Keywords: Cycle, Path, Tree, Connected graph, Coloring, Line graph, Split graph

Mathematics Subject Classification (2010): 05C10

1. Introduction

We follow Harary[5] for all terminologies related to graphs. Given a graph G, V(G) and E(G) denote the sets of vertices and edges of G, respectively and \overline{G} denotes the *complement* of G. P_n and C_n denote a *path* of n vertices and *cycle* of n vertices, respectively. For any connected graph G, nG denotes the graph with n components, each being isomorphic to G. For any two disjoint graphs G and H, G + H denotes the *join* of G and H.[5] A *tree* is a connected graph without cycles. A star is a tree $K_{1,n}$ for $n \ge 1$. A graph G is *n*-connected if the removal of any m vertices for $0 \le m < n$, from G results in neither a disconnected graph nor a trivial graph. A graph G is *triangulated* if every cycle of length strictly greater than 3 possesses a chord; that is, an edge joining two nonconsecutive vertices of the cycle. Equivalently, G does not

^{*}Department of Mathematics, Pondicherry University; hpppondy@gmail.com *Research Scholar, Pondicherry University; vraja.math@gmail.com

Mapana J Sci, 16, 3 (2017)

contain an induced subgraph isomorphic to C_n for n > 3. A graph *G* is *n*-degenerate for $n \ge 0$ if every induced subgraph of *G* has a vertex of degree at most *n*.

2. Structure of *H*-trees

Notice that trees are equivalently defined by the following recursive construction rule:

Step 1. A single vertex K_1 is a tree.

Step 2. Any tree of order $n \ge 2$, can be constructed from a tree Q of order n - 1 by inserting an n^{th} - vertex and joining it to any vertex of Q.

In [10], the above tree-construction procedure is extended by allowing the base to be any graph. It is natural that a connected graph, which is not a tree possesses a structure that reflects like a tree and its recursive growth starts from any graph. In other words, for any given graph H, there is associated another graph, we call H-tree that is constructed as follows.

Definition 2.1. Let *H* be any graph of order *k*. An *H*-tree, denoted by $G\langle H \rangle$, is a graph that can be obtained by the following recursive construction rule:

Step 1. H is the smallest H-tree.

Step 2. To an *H*-tree $G\langle H \rangle$ of order $n \ge k$, insert an $(n + 1)^{th}$ -vertex and join it to any set of *k* distinct vertices: $v_{i_1}, v_{i_2}, \ldots, v_{i_k}$ of $G\langle H \rangle$, so that the induced subgraph $\langle \{v_{i_1}, v_{i_2}, \ldots, v_{i_k}\} \rangle$ is isomorphic to *H*.

For example, $K_{1,3}$ -tree of order 8 is shown in Figure 1.

Remark 2.2. 1. The notion of K_1 -trees is the usual concept of trees.

2. The notion of K_2 -trees is equivalent to the notion of 2-trees, which is studied in [7]. Actually, they form a special subclass of planar graphs. In fact, the maximal outerplanar graphs are the only outerplanar K_2 -trees.

3. The notion of K_k -trees is equivalent to the notion of k-trees[2, 7] and they form actually a family of k-connected, triangulated and K_{k+2} -free graphs of order $\geq k + 1$.

4. The notion of $\overline{K_k}$ -trees is equivalent to the concept of k-ctrees[9] and they form a family of k-degenerate and triangle-free graphs of order $p \ge 2k$ and size k(p - k).

The development in the class of H-trees is motivated by the notion of k-trees[2, 7] or k-ctrees[9] and their applications in the area of reliability of communication networks, have generated much interest from an algorithmic (or theoretical) point of view.

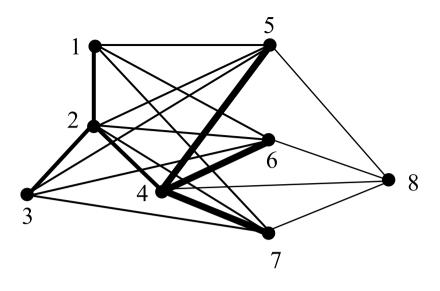


Figure 1: K_{1,3}-tree of order 8

Definition 2.3. A graph F is called a H-tree if there exists a graph H such that F is isomorphic to $G\langle H \rangle$.

Equivalently, a *H*-tree $G\langle H \rangle$ of order $\geq k + 1$, (where |H| = k) can be reduced to *H* by sequentially removing the vertices of degree *k* from $G\langle H \rangle$.

For a vertex v of a graph G, a *neighbour* of v is a vertex adjacent to v in G. The *neighbourhood* N(v) of v is the set of all neighbours of v.

The following result is a simple characterization of *H*-trees involving their hereditary subgraphs and is simply the restatement of Definition 2.1.

Proposition 2.4. Let *H* be any graph of order *k*. Then *G* is a *H*-tree of order $\ge k + 1$ if and only if *G* contains a vertex *v* of degree *k* such that N(v) induces *H* in *G* and G - v is a *H*-tree.

An immediate consequence of the above result is the following corollary.

Corollary 2.5. For any graph H of order k and size m, let G be a H-tree of order $p \ge k$. Then

- 1. |E(G)| = m + k(p k).
- 2. G contains a subgraph isomorphic to $H + 2K_1$, provided $p \ge k+2$.
- 3. If *H* has *t* triangles, then the number of triangles in *G* is t + m(p k).

Mapana J Sci, 16, 3 (2017)

3. Properties and Characterizations

Definition 3.1. A graph *F* is called a P_k -tree (or path-tree) if there exists a path P_k of order *k* such that *F* is isomorphic to $G\langle P_k \rangle$.

We define similarly, a C_k -tree (or cycle-tree). Generally speaking, every P_k (resp. C_k)-tree of order $\ge k + 1$, can be reduced to P_k (resp. C_k) by sequentially removing the vertices of degree k from P_k (resp. C_k)-tree.

In [10], the following general open-problem is proposed for further research.

Open Problem 1. Characterize the class of star-trees $G(K_{1,n})$ for $n \ge 2$.

We now characterize path-trees $G\langle P_k \rangle$ for $k \ge 4$.

Theorem 3.2. A graph G of order $p \ge k + 1$, is a P_k -tree if and only if G is isomorphic to $P_k + (p - k)K_1$.

Proof. Suppose that *G* is isomorphic to $P_k + (p-k)K_1$. Then *G* contains the vertices $v_1, v_2, \ldots, v_{p-k}$, each of degree *k* such that $N(v_i)$ induces P_k in *G* for $1 \le i \le p - k$. By repeated removal of each vertex v_i from *G* reduces to P_k . Hence, *G* is a P_k -tree.

We prove the converse by induction on *p*.

If p = k + 1, then by the recursive definition, a P_k -tree *G* of order k + 1, is isomorphic to $P_k + K_1$, which is obviously true.

Assume that the result is true for any positive integer m < p. Next, we consider a P_k -tree of order p. By Proposition 2.4 with $H = P_k$, G contains a vertex v of degree k such that N(v) induces P_k in G and G - v is again a P_k -tree of order p - 1. By induction hypothesis, G - v is isomorphic to $P_k + (p - k - 1)K_1$. Consequently, G - v is the join of two disjoint graphs : P_k and $I = (p - k - 1)K_1$.

Suppose that *v* is adjacent to each vertex of P_k in *G*. Then the result follows immediately. Otherwise, *v* is adjacent to at least one vertex of *I* in *G*. Moreover, deg(v) = k in *G*. There exist two disjoint nonempty sets : *A* and *B* such that $A \subseteq P_k$; $B \subseteq I$ with $A \cup B = N(v)$ and |A| + |B| = k.(Figure 2) We discuss four cases, depending on the cardinalities of *A* and *B* :

Case 1. |A| = k - 1 and |B| = 1. Since $k \ge 4$, $\langle A \rangle$ contains at least one edge, say e = xy. Then for any vertex u of B, we have a triangle uxyu in N(v), which is not possible.

Case 2. |A| = k - 2 and |B| = 2. Immediately, we have $|A| \ge 2$ (because $k \ge 4$).

There are two possibilities for discussion.

2.1. Suppose that *A* is independent. Certainly, there are two non-adjacent vertices *x* and *y* in *A*. Let us consider $B = \{a, b\}$. Immediately,

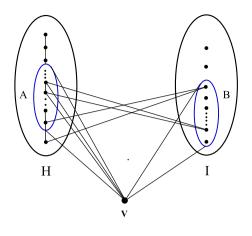


Figure 2:

 $\langle \{x, y, a, b\} \rangle$ is isomorphic to C_4 and it appears in $\langle N(v) \rangle$. This is impossible.

2.2. Suppose that *A* is non-independent. Then $\langle A \rangle$ contains at least one edge. In this situation, Case 1 repeats.

Case 3. |A| = 1 and |B| = k - 1. It is easy to see that $\langle N(v) \rangle$ is a star $K_1 + \overline{K_{k-1}}$ and this is not possible.

Case 4. $|A| \ge 2$ and $|B| \ge 3$.

We discuss two possibilities, depending on A :

4.1. Suppose that *A* is non-independent. Then Case 1 repeats.

4.2. Suppose that *A* is independent. Then Case 2 repeats.

In each of the above cases, we see that $\langle N(v) \rangle$ is not isomorphic to P_k . This is a contradiction.

In [7], it is shown that the notion of C_3 -trees are equivalent to the family of 3-trees and it is also proved that this class of graphs are equivalent to the family of 3-connected, triangulated and K_5 -free graphs of order ≥ 4 . Further, it is noticed that the graphs in the class of C_4 -trees have highly irregular structure. In fact, it is hard to find a characterization of C_4 -trees. We first propose the following problem for further research.

Open Problem 2. Characterize the class of C₄-trees.

The following theorem is a characterization of C_k -trees for $k \ge 5$ and its proof is quite similar to that of Theorem 3.2, with the replacement of P_k by C_k .

Theorem 3.3. A graph G of order $p \ge k + 1$, is a C_k -tree if and only if G is isomorphic to $C_k + (p-k)K_1$.

The immediate consequence of theorems 3.2 and 3.3 is the following corollary.

Corollary 3.4. 1.
$$\chi(G\langle P_k \rangle) = 3$$
 for $k \ge 4$.
2. $\chi(G\langle C_k \rangle) = \begin{cases} 3 & \text{if } k \ge 6 \text{ and is even.} \\ 4 & \text{if } k \ge 5 \text{ and is odd.} \end{cases}$

Proposition 3.5. Let $G\langle H \rangle$ be a *H*-tree of order $p \ge k + 1$, where *H* is either P_k ; $k \ge 4$ or *H* is C_k : $k \ge 5$. **1.** $G\langle H \rangle$ is hamiltonian if and only if $p \le 2k$. **2.** $G\langle H \rangle$ is planar if and only if $p \le k + 2$.

Proof. By theorems 3.2. and 3.3, $G\langle H \rangle$ is isomorphic to $H + (p-k)K_1$. **1.** Assume that $G\langle H \rangle$ is hamiltonian and on contrary, $p \ge 2k+1$. Since |V(H)| = k, we have $|(p-k)K_1| = k+1$. Consider S = V(H). Then G - S is isomorphic to $(p-k)K_1$ and hence the number of components of $(G-S) \ge k+1$. This implies that $G\langle H \rangle$ is not hamiltonian. So, $p \le 2k$. To prove the converse, it is sufficient to obtain a Hamilton-cycle in $G\langle H \rangle$, where $G\langle H \rangle$ is isomorphic to $H + tK_1$ for $1 \le t \le k$. Let $V(H) = \{u_1, u_2, \dots, u_k\}$ and $V(tK_1) = \{v_1, v_2, \dots, v_t\}$. Since $k \ge t$, we have $(k - t) = m \ge 0$. Immediately, a Hamilton cycle :

 $u_1, u_2, \ldots, u_{m+1}, v_1, u_{m+2}, v_2, u_{m+3}, \ldots, v_{t-1}, u_k, v_t, u_1$ appears in $G\langle H \rangle$ (Figure 3). Hence, *H*-tree is hamiltonian.

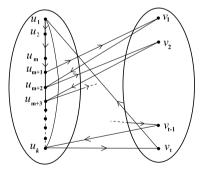


Figure 3: Hamilton-cycle

2. Assume that $G\langle H \rangle$ is planar and on contrary, $p \ge k+3$. Immediately, we observe that $(H + 3K_1) \subseteq G\langle H \rangle$. Since $K_{3,3}$ appears as an induced subgraph in $(H + 3K_1)$, it follows that $K_{3,3}$ appears as a forbidden subgraph in $G\langle H \rangle$ and hence by Kuratowski theorem, $G\langle H \rangle$ is not planar. This is a contradiction to our assumption. Hence, $p \le k+2$. It is easy to prove the converse.

4. Dominations and *b*-coloring

For any graph G, $\gamma(G)$ denotes the *domination number* of G. A Roman domination function (in short, RDF) on G is a function $f : V(G) \rightarrow \{0, 1, 2\}$ such that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of this function is $f(V(G)) = \sum_{u \in V(G)} f(u)$. The minimum weight of a Roman dominating function on G is the Roman domination number of G and is denoted by $\gamma_R(G)$.[3] The following result gives both the domination and Roman domination numbers of path-trees and cycle-trees and its proof is obvious.

Proposition 4.1. Let G(H) be a *H*-tree of order $p \ge k + 1$, where *H* is either P_k for $k \ge 4$ or C_k for $k \ge 5$. Then

 $1. \ \gamma(G\langle H\rangle) = \begin{cases} 1 & \text{if } p = k + 1. \\ 2 & \text{otherwise.} \end{cases}$ $2. \ \gamma_R(G\langle H\rangle) = \begin{cases} 2 & \text{if } p = k + 1. \\ 3 & \text{if } p = k + 2. \\ 4 & \text{otherwise.} \end{cases}$

The *b*-chromatic number b(G) of a graph G is the largest integer k such that G admits a proper k-coloring in which every color class has a representative adjacent to at least one vertex in each of the other color classes. Such a coloring of G is a *b*-coloring of G[6] It is shown in [6] that for any path P_k and a cycle C_k for $k \ge 5$, $b(P_k) = b(C_k) = 3$.

Next, we determine the *b*-chromatic number of the path-trees and cycle-trees. For this, we establish the following lemma.

Lemma 4.2. In any *b*-coloring of a graph $H + (p - k)K_1$, where *H* is any graph of order *k* and $p \ge k + 1$, all the vertices of $(p - k)K_1$ receive the same color.

Proof. Let $u_1, u_2, ..., u_k$, be the vertices of H and let $v_1, v_2, ..., v_{p-k}$ be the vertices of I, where $I = (p - k)K_1$. If p = k + 1, then |I| = 1. The result obvious.

If $p \ge k + 2$, then $|I| \ge 2$. If possible, then assume that in some *b*-coloring of H + I, the vertices of *I* receive $q \ge 2$ different colors, say c_1, c_2, \ldots, c_q . Since *I* is independent and each vertex of *I* is adjacent to all vertices of *H*, it follows that there is no color dominating vertex corresponding to the colors c_i $(1 \le i \le q)$ in H + I. This is not possible in any *b*-coloring of H + I, because each color class has at least one color dominating vertex.

Theorem 4.3. Let G(H) be a *H*-tree of order $p \ge k+1$, where *H* is either a path P_k for $k \ge 4$ or a cycle C_k for $k \ge 5$. Then

1. $b(G\langle P_k \rangle) = \begin{cases} 3 & \text{if } k = 4. \\ 4 & \text{otherwise.} \end{cases}$ 2. $b(G\langle C_k \rangle) = 4.$

Proof. By theorems 3.2, and 3.3, we have $G\langle H \rangle$ is isomorphic to H + I, where $I = (p - k)K_1$. We discuss two cases depending on k in (1) :

Case 1. Assume that k = 4. Since $b(P_k) = 2$ and from Lemma 4.2, all the vertices of *I* receive a single color, it follows that $b(G\langle P_k \rangle) \leq 3$.

To achieve the lower bound, color P_k properly by using the colors 1 and 2 and next, assign the color 3 to each vertex of *I*. Thus, we have $b(G\langle P_k \rangle) = 3$.

Case 2. Assume that $k \ge 5$. Since it is shown in [6] that $b(P_k) = 3$ and all the vertices of *I* receive a single color, it follows that $b(G\langle P_k \rangle) \le 4$. To achieve the lower bound, color P_k properly by all three colors 1, 2 and 3 and next, assign color 4 to each vertex of *I*. Thus, we have $b(G\langle P_k \rangle) = 4$.

For (2), since $b(C_k) = 3$ and all the vertices of *I* receive a single color, it follows that $b(G(C_k)) \le 4$. To achieve the lower bound, color C_k properly by using all three colors 1, 2, 3, and next, assign the color 4 to each vertex of *I*. Thus, we have $b(G(C_k)) = 4$.

5. Line graphs and path (or cycle)-trees

In this section, we determine all the graphs, whose line graphs are either P_k -trees or C_k -trees for $k \ge 3$. We begin with the definition of line graph. The *line graph* L(G) of a graph G, is the graph whose vertex set is the edge set of G and in which two vertices are adjacent, if the corresponding edges are adjacent in G.[5] Beineke [5, p.75] has shown that a graph is a line graph if and only if it has none of nine specified graphs as induced subgraphs, including $K_{1,3}$, $(K_1 \cup K_2) +$ $2K_1$ and $(C_5 + K_1)$. The problem of obtaining all the graphs, whose line graphs are P_k -trees for $1 \le k \le 2$, is already done in [8, 9] and therefore, we solve the problem for $k \ge 3$.

Proposition 5.1. A P_k -tree of order $p \ge k + 1$; $k \ge 3$, is the line graph of a graph G if and only if both the following conditions hold:

1. k = 3; *G* is either $(K_2 + 2K_1)$ or a triangle with exactly one end-edge at some vertex.

2. k = 4; G is a triangle with exactly two end-edges, one at some vertex.

Proof. We first show that *G* is connected. If not, then L(G) is disconnected and by Definition 2.1 with $H = P_k$, L(G) is not a P_k -tree. This is a contradiction. Since L(G) is a P_k -tree of order $p \ge k + 1$ and $k \ge 3$, by Theorem 3.2, P_k -tree *T* is isomorphic to $P_k + (p - k)K_1$. Suppose $k \ge 5$. Then *T* contains a subgraph *F* isomorphic to $P_5 + K_1$. Since

 $F \subseteq T$ and *T* is *L*(*G*), immediately a forbidden subgraph isomorphic to $K_{1,3}$ appears in *L*(*G*). This is impossible and it shows that $k \leq 4$. Thus, either k = 3 or k = 4.

Case 1. Assume that k = 3. Further, we observe that $p \le 5$; since otherwise, $P_3 + 3K_1$ appears in *T* and L(G) contains a forbidden subgraph $K_{1,3}$.

We discuss two possibilities depending on *p*.

1.1. If p = 4, then $L(G) = P_3 + K_1$ and hence *G* is isomorphic to triangle with exactly one end-edge at some vertex.

1.2. If p = 5, then $L(G) = P_3 + 2K_1$ and therefore, *G* is isomorphic to $K_2 + 2K_1$.

Case 2. Assume that k = 4. Moreover, we observe that p = 5; since otherwise, $P_4 + 2K_1$ appears in *T* and *L*(*G*) contains a forbidden subgraph isomorphic to $(K_1 \cup K_2) + 2K_1$. Since k = 4 and p = 5, it follows that $L(G) = P_4 + K_1$ and hence *G* is isomorphic to a triangle with exactly two end-edges, one at some vertex.

It is easy to prove the converse.

Finally, we determine all the graphs whose line graphs are C_k -trees for $k \ge 3$. However for k = 3, this problem is solved in [8] and now we solve this problem, for $k \ge 4$.

Proposition 5.2. There are only two graphs whose line graphs are C_k -trees for $k \ge 4$. These graphs are $K_2 + 2K_1$ and K_4 .

Proof. Suppose that L(G) is a C_k -tree of order $p \ge k+1$; $k \ge 4$. Clearly, *G* is connected. Assume that $k \ge 5$. Then $p \ge 6$ and immediately, L(G) contains a subgraph *F* isomorphic to $C_k + K_1$. There are two possibilities, depending on k:

1. If k = 5, then $F = C_5 + K_1$ is a forbidden subgraph of L(G).

2. If $k \ge 6$, then *F* contains a forbidden subgraph isomorphic to $K_{1,3}$.

In either case, we arrive at a contradiction. Hence, k = 4. Furthermore, we observe that $p \le 6$; since otherwise, L(G) contains a subgraph *F* isomorphic to $C_4 + 3K_1$. It is easy to check that a forbidden subgraph isomorphic to $K_{1,3}$ appears in *F* and hence in L(G).

Next, we discuss two possibilities depending on *p*.

1. If p = 5, then $L(G) = C_4 + K_1$ and hence $G = K_2 + 2K_1$.

2. If p = 6, then $L(G) = C_4 + 2K_1$ and hence $G = K_4$.

6. Relation between *P_k*-trees and split graphs

A nonempty subset *S* of V(G) is an *independent set* I(G) *in a graph G* if no two vertices of *S* are adjacent in *G*. A nonempty subset *K* of V(G)is a *complete set* K(G) *in G* if every two vertices of *K* are adjacent in *G*. The concept of a split graph appears in [4]. A *split graph* is defined to be a graph *G*, whose vertex set V(G) can be partitioned into a Mapana J Sci, 16, 3 (2017)

complete set *K* and an independent set *I* such that $G = (K \cup I \cup (K, I))$, where (K, I) denotes a set of edges *xy* for $x \in K$ and $y \in I$. Notice that the partition $V(G) = K \cup I$ of a split graph *G* will not be unique always. Let us denote a split graph *G* with its bipartition (K, I) by G(K, I). In [4, Theorem 6.3], it is proved that a graph *G* is a split graph if and only if *G* contains no induced subgraph isomorphic to $2K_2, C_4$ or C_5 .

Now, we obtain the conditions under which P_k -trees to be the split graphs. We begin with the following definitions.

Definition 6.1. A double-star D(m, n) for $m, n \ge 1$; is a tree, obtained from a complete graph K_2 , by joining *m* isolated vertices to one end of K_2 and *n* isolated vertices to the other end of K_2 .

Definition 6.2. For any triangle K_3 with vertices a, b and c, there are three special families of K_2 -trees as follows :

1. A *m*-graph for $m \ge 1$, denoted by T(m), is a K_2 -tree, obtained from K_3 , by joining *m* isolated vertices to both *a* and *b* of K_3 .

2. A (m, n)-graph for $m, n \ge 1$, denoted by T(m, n), is a K_2 -tree, obtained from T(m), by joining n isolated vertices to both b and c of K_3 in T(m).

3. A (m, n, k)-graph for $m, n, k \ge 1$, denoted by T(m, n, k), is a K_2 -tree, obtained from T(m, n), by joining k isolated vertices to both a and c of K_3 in T(m, n).

Proposition 6.3. A P_k -tree of order $p \ge k + 1$, is a split graph if and only if the following statements hold:

1. k = 1. There are only two split graphs:

a) $G(K_1, \bar{K}_{p-1})$ is a star $K_1 + \bar{K}_{p-1}$.

b) $G(K_2, \bar{K}_{p-2})$ is a double-star D(m, n), where (m + n + 2) = p; $m, n \ge 1$.

2. k = 2. There are only two split graphs:

a) $G(K_2, \bar{K}_{p-2})$ is a K_2 -tree $K_2 + \bar{K}_{p-2}$.

b) $G(K_3, \bar{K}_{p-3})$ is one of the following three K_2 -trees : $T(n_1)$ for $n_1 + 3 = p$; $T(n_1, n_2)$ for $n_1 + n_2 + 3 = p$ and $T(n_1, n_2, n_3)$ for $n_1 + n_2 + n_3 + 3 = p$.

3. k = 3. Either $G(K_2, \bar{K}_2)$ or $G(K_3, K_1)$ is a P_3 -tree $P_3 + K_1$. **4.** k = 4. $G(K_3, \bar{K}_2)$ is a P_4 -tree $P_4 + K_1$.

Proof. Suppose that a P_k -tree of order $p \ge k + 1$, is a split graph of the form : G(K, I). Immediately, $k \le 4$; since otherwise, $2K_2$ appears as a forbidden subgraph in P_k .

We discuss three cases, depending on *k*.

Case 1. Assume that k = 1. Then P_k is K_1 . Clearly, a P_k -tree T is a nontrivial tree. In this case, the star $K_1 + \bar{K}_{p-1}$ and double- stars D(m, n) with $(m + n = p - 2; m, n \ge 1)$, are the only split graphs of the

form: $G(K_1, \overline{K}_{p-1})$ and $G(K_2, \overline{K}_{p-2})$, respectively; since otherwise, $2K_2$ appears immediately as a forbidden subgraph in *T*.

Case 2. Assume that k = 2. Then P_k is K_2 . Clearly, the notion of K_2 -tree is equivalent to the notion of 2-tree.[7] By (3) of Remark 2.2 (with k = 2), a K_2 -tree T is 2-connected, triangulated and K_4 -free. Consequently, the complete sets K in T are the only K_2 and K_3 . Next, there are two possibilities to discuss on K.

2.1. If $K = K_2$, then T is isomorphic to $K_2 + \bar{K}_{p-2}$, is the split graph of the type: $G(K_2, \bar{K}_{p-2})$.

2.2. If $K = K_3$, then one of the following types of K_2 -trees : $T(n_1)$, with $n_1 + 3 = p$; $T(n_1, n_2)$ with $(n_1 + n_2 + 3) = p$ and $T(n_1, n_2, n_3)$ with $(n_1 + n_2 + n_3 + 3) = p$, is a split graph of the form: $G(K_3, \bar{K}_{p-3})$.

Case 3. Assume k such that $(3 \le k \le 4)$. Since $k \ge 3$, P_k contains P_3 as an induced subgraph. By (2) of Corollary 2.5, a P_k -tree of order $p \ge k + 2$, contains a subgraph isomorphic to $P_k + \bar{K}_2$. Immediately, a forbidden subgraph C_4 appears in $P_3 + \bar{K}_2$ and hence, in $P_k + \bar{K}_2$. This is a contradiction and hence proves that p = k + 1. Now, we discuss two possibilities.

3.1. k = 3. Then both K_3 and K_4 are the complete sets in a P_3 -tree of order 4. This shows that P_3 -tree $P_3 + K_1$ is a split graph either of the type: $G(K_2, \bar{K}_2)$ or $G(K_3, K_1)$.

3.2. k = 4. Then K_3 is the only complete set in a P_4 -tree of order 5. This shows that P_4 -tree $P_4 + K_1$ is a split graph of the type $G(K_3, \bar{K}_2)$.

It is easy to prove the converse.

Open Problem 3. Determine the conditions under which the C_k -trees for $k \ge 3$, are the split graphs.

7. Acknowledgment

Research was supported by UGC-SAP DRS-II(2015) for the first author. Research was supported by UGC-BSR-SRF, Research Fellowship, Government of India, New Delhi, India for the second author.

References

- [1] S. Arnborc and A. Proskurowski, "Characterization and recognition of partial 3-trees," *SIAM J. Alg. Discrete. Math.*, vol. 7, no. 2, pp. 305-314, 1986.
- [2] L. W. Beineke and R. E. Pippert, "Properties and characterizations of k-trees," *Mathematica*, vol.18, pp. 141-151, 1971.
- [3] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi, "Roman domination in graphs," *Discrete Math.*, vol. 278, pp. 11-22, 2004.
- [4] M. Golumbic, *Algorithmic Graph Theory and Perfect Graphs*. New York: Academic press, 1980.

- [5] F. Harary, Graph Theory. Reading, MA: Addision-Wesley, 1969.
- [6] M. Kouider and M. Maheo, "Some bounds for the b-chromatic number of a graph," *Discrete Math.*, vol. 256 no. 1-2, pp. 267-277, 2002.
- [7] H. P. Patil, "On the structure of *k*-trees," J. Combinatorics, Inform. and System Sci., vol. 11, no. 2-4, pp. 57-64, 1986.
- [8] H. P. Patil, "*k*-trees and some graph valued functions," *Discussiones Mathematicae*, vol. VII, pp. 87-92, 1985.
- [9] H. P. Patil and R. Pandiya Raj, "Characterizations of k-ctrees and graph valued functions," *J Combinatorial Math. Combinatorial Comp.*, vol. 84, pp. 91-98, 2013.
- [10] H. P. Patil and V. Raja, "Characterizations of *H*-graphs," Algorithms and Discrete Applied Mathematics: Proc. 2nd Int. Conf. CALDAM 2016, Thiruvananthapuram, India, Feb. 18-20, 2016, pp. 349-356, Springer.