Mapana J Sci, 16, 3 (2017), 1-12

Path (or cycle)-trees with Graph Equations involving Line and Split Graphs

H. P. Patil*and V. Raja ${ }^{\dagger}$

Abstract

H-trees generalizes the existing notions of trees, higher dimensional trees and k-ctrees. The characterizations and properties of both P_{k}-trees for $k \geq 4$ and C_{n}-trees for $n \geq 5$ and their hamiltonian property, dominations, planarity, chromatic and b-chromatic numbers are established. The conditions under which P_{k}-trees for $k \geq 3$ (resp. $C_{n}{ }^{-}$ trees for $n \geq 4$), are the line graphs are determined. The relationship between path-trees and split graphs are developed.

Keywords: Cycle, Path, Tree, Connected graph, Coloring, Line graph, Split graph

Mathematics Subject Classification (2010): 05C10

1. Introduction

We follow Harary[5] for all terminologies related to graphs. Given a graph $G, V(G)$ and $E(G)$ denote the sets of vertices and edges of G, respectively and \bar{G} denotes the complement of $G . P_{n}$ and C_{n} denote a path of n vertices and cycle of n vertices, respectively. For any connected graph $\mathrm{G}, n G$ denotes the graph with n components, each being isomorphic to G. For any two disjoint graphs G and $H, G+H$ denotes the join of G and H.[5] A tree is a connected graph without cycles. A star is a tree $K_{1, n}$ for $n \geq 1$. A graph G is n-connected if the removal of any m vertices for $0 \leq m<n$, from G results in neither a disconnected graph nor a trivial graph. A graph G is triangulated if every cycle of length strictly greater than 3 possesses a chord; that is, an edge joining two nonconsecutive vertices of the cycle. Equivalently, G does not

[^0]contain an induced subgraph isomorphic to C_{n} for $n>3$. A graph G is n-degenerate for $n \geq 0$ if every induced subgraph of G has a vertex of degree at most n.

2. Structure of H-trees

Notice that trees are equivalently defined by the following recursive construction rule:
Step 1. A single vertex K_{1} is a tree.
Step 2. Any tree of order $n \geq 2$, can be constructed from a tree Q of order $n-1$ by inserting an $n^{\text {th }}$ - vertex and joining it to any vertex of Q.

In [10], the above tree-construction procedure is extended by allowing the base to be any graph. It is natural that a connected graph, which is not a tree possesses a structure that reflects like a tree and its recursive growth starts from any graph. In other words, for any given graph H, there is associated another graph, we call H-tree that is constructed as follows.

Definition 2.1. Let H be any graph of order k. An H-tree, denoted by $G\langle H\rangle$, is a graph that can be obtained by the following recursive construction rule:
Step 1. H is the smallest H-tree.
Step 2. To an H-tree $G\langle H\rangle$ of order $n \geq k$, insert an $(n+1)^{\text {th }}$-vertex and join it to any set of k distinct vertices: $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}$ of $G\langle H\rangle$, so that the induced subgraph $\left\langle\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}\right\rangle$ is isomorphic to H.

For example, $K_{1,3}$-tree of order 8 is shown in Figure 1.
Remark 2.2. 1. The notion of K_{1}-trees is the usual concept of trees.
2. The notion of K_{2}-trees is equivalent to the notion of 2-trees, which is studied in [7]. Actually, they form a special subclass of planar graphs. In fact, the maximal outerplanar graphs are the only outerplanar K_{2} trees.
3. The notion of K_{k}-trees is equivalent to the notion of k-trees [2, 7] and they form actually a family of k-connected, triangulated and K_{k+2}-free graphs of order $\geq k+1$.
4. The notion of $\overline{K_{k}}$-trees is equivalent to the concept of k-ctrees[9] and they form a family of k-degenerate and triangle-free graphs of order $p \geq 2 k$ and size $k(p-k)$.

The development in the class of H-trees is motivated by the notion of k-trees[2, 7] or k-ctrees[9] and their applications in the area of reliability of communication networks, have generated much interest from an algorithmic (or theoretical) point of view.

7

Figure 1: $K_{1,3}$-tree of order 8

Definition 2.3. A graph F is called a H-tree if there exists a graph H such that F is isomorphic to $G\langle H\rangle$.
Equivalently, a H-tree $G\langle H\rangle$ of order $\geq k+1$, (where $|H|=k$) can be reduced to H by sequentially removing the vertices of degree k from $G\langle H\rangle$.

For a vertex v of a graph G, a neighbour of v is a vertex adjacent to v in G. The neighbourhood $N(v)$ of v is the set of all neighbours of v.

The following result is a simple characterization of H-trees involving their hereditary subgraphs and is simply the restatement of Definition 2.1.

Proposition 2.4. Let H be any graph of order k. Then G is a H-tree of order $\geq k+1$ if and only if G contains a vertex v of degree k such that $N(v)$ induces H in G and $G-v$ is a H-tree.

An immediate consequence of the above result is the following corollary.

Corollary 2.5. For any graph H of order k and size m, let G be a H-tree of order $p \geq k$. Then

1. $|E(G)|=m+k(p-k)$.
2. G contains a subgraph isomorphic to $H+2 K_{1}$, provided $p \geq k+2$.
3. If H has t triangles, then the number of triangles in G is $t+m(p-$ k).

3. Properties and Characterizations

Definition 3.1. A graph F is called a P_{k}-tree (or path-tree) if there exists a path P_{k} of order k such that F is isomorphic to $G\left\langle P_{k}\right\rangle$.

We define similarly, a C_{k}-tree (or cycle-tree). Generally speaking, every P_{k} (resp. C_{k})-tree of order $\geq k+1$, can be reduced to P_{k} (resp. C_{k}) by sequentially removing the vertices of degree k from P_{k} (resp. C_{k})-tree.

In [10], the following general open-problem is proposed for further research.

Open Problem 1. Characterize the class of star-trees $G\left\langle K_{1, n}\right\rangle$ for $n \geq 2$.
We now characterize path-trees $G\left\langle P_{k}\right\rangle$ for $k \geq 4$.
Theorem 3.2. A graph G of order $p \geq k+1$, is a P_{k}-tree if and only if G is isomorphic to $P_{k}+(p-k) K_{1}$.

Proof. Suppose that G is isomorphic to $P_{k}+(p-k) K_{1}$. Then G contains the vertices $v_{1}, v_{2}, \ldots, v_{p-k}$, each of degree k such that $N\left(v_{i}\right)$ induces P_{k} in G for $1 \leq i \leq p-k$. By repeated removal of each vertex v_{i} from G reduces to P_{k}. Hence, G is a P_{k}-tree.

We prove the converse by induction on p.
If $p=k+1$, then by the recursive definition, a P_{k}-tree G of order $k+1$, is isomorphic to $P_{k}+K_{1}$, which is obviously true.
Assume that the result is true for any positive integer $m<p$. Next, we consider a P_{k}-tree of order p. By Proposition 2.4 with $H=P_{k}$, G contains a vertex v of degree k such that $N(v)$ induces P_{k} in G and $G-v$ is again a P_{k}-tree of order $p-1$. By induction hypothesis, $G-v$ is isomorphic to $P_{k}+(p-k-1) K_{1}$. Consequently, $G-v$ is the join of two disjoint graphs : P_{k} and $I=(p-k-1) K_{1}$.

Suppose that v is adjacent to each vertex of P_{k} in G. Then the result follows immediately. Otherwise, v is adjacent to at least one vertex of I in G. Moreover, $\operatorname{deg}(v)=k$ in G. There exist two disjoint nonempty sets : A and B such that $A \subseteq P_{k} ; \quad B \subseteq I$ with $A \cup B=N(v)$ and $|A|+|B|=k$. (Figure 2) We discuss four cases, depending on the cardinalities of A and B :
Case 1. $|A|=k-1$ and $|B|=1$. Since $k \geq 4,\langle A\rangle$ contains at least one edge, say $e=x y$. Then for any vertex u of B, we have a triangle $u x y u$ in $N(v)$, which is not possible.
Case 2. $|A|=k-2$ and $|B|=2$. Immediately, we have $|A| \geq 2$ (because $k \geq 4$).
There are two possibilities for discussion.
2.1. Suppose that A is independent. Certainly, there are two nonadjacent vertices x and y in A. Let us consider $B=\{a, b\}$. Immediately,

Figure 2:
$\langle\{x, y, a, b\}\rangle$ is isomorphic to C_{4} and it appears in $\langle N(v)\rangle$. This is impossible.
2.2. Suppose that A is non-independent. Then $\langle A\rangle$ contains at least one edge. In this situation, Case 1 repeats.
Case 3. $|A|=1$ and $|B|=k-1$. It is easy to see that $\langle N(v)\rangle$ is a star $K_{1}+\overline{K_{k-1}}$ and this is not possible.
Case 4. $|A| \geq 2$ and $|B| \geq 3$.
We discuss two possibilities, depending on A :
4.1. Suppose that A is non-independent. Then Case 1 repeats.
4.2. Suppose that A is independent. Then Case 2 repeats.

In each of the above cases, we see that $\langle N(v)\rangle$ is not isomorphic to P_{k}. This is a contradiction.

In [7], it is shown that the notion of C_{3}-trees are equivalent to the family of 3 -trees and it is also proved that this class of graphs are equivalent to the family of 3 -connected, triangulated and K_{5}-free graphs of order ≥ 4. Further, it is noticed that the graphs in the class of C_{4}-trees have highly irregular structure. In fact, it is hard to find a characterization of C_{4}-trees. We first propose the following problem for further research.

Open Problem 2. Characterize the class of C_{4}-trees.
The following theorem is a characterization of C_{k}-trees for $k \geq 5$ and its proof is quite similar to that of Theorem 3.2, with the replacement of P_{k} by C_{k}.

Theorem 3.3. A graph G of order $p \geq k+1$, is a C_{k}-tree if and only if G is isomorphic to $C_{k}+(p-k) K_{1}$.

The immediate consequence of theorems 3.2 and 3.3 is the following corollary.

Corollary 3.4. 1. $\chi\left(G\left\langle P_{k}\right\rangle\right)=3$ for $k \geq 4$.
2. $\chi\left(G\left\langle C_{k}\right\rangle\right)= \begin{cases}3 & \text { if } k \geq 6 \text { and is even. } \\ 4 & \text { if } k \geq 5 \text { and is odd. }\end{cases}$

Proposition 3.5. Let $G\langle H\rangle$ be a H-tree of order $p \geq k+1$, where H is either $P_{k} ; k \geq 4$ or H is $C_{k}: k \geq 5$.

1. $G\langle H\rangle$ is hamiltonian if and only if $p \leq 2 k$.
2. $G\langle H\rangle$ is planar if and only if $p \leq k+2$.

Proof. By theorems 3.2. and 3.3, $G\langle H\rangle$ is isomorphic to $H+(p-k) K_{1}$. 1. Assume that $G\langle H\rangle$ is hamiltonian and on contrary, $p \geq 2 k+1$. Since $|V(H)|=k$, we have $\left|(p-k) K_{1}\right|=k+1$. Consider $S=V(H)$. Then $G-S$ is isomorphic to $(p-k) K_{1}$ and hence the number of components of $(G-S) \geq k+1$. This implies that $G\langle H\rangle$ is not hamiltonian. So, $p \leq 2 k$. To prove the converse, it is sufficient to obtain a Hamilton-cycle in $G\langle H\rangle$, where $G\langle H\rangle$ is isomorphic to $H+t K_{1}$ for $1 \leq t \leq k$. Let $V(H)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ and $V\left(t K_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$. Since $k \geq t$, we have $(k-t)=m \geq 0$. Immediately, a Hamilton cycle :
$u_{1}, u_{2}, \ldots, u_{m+1}, v_{1}, u_{m+2}, v_{2}, u_{m+3}, \ldots, v_{t-1}, u_{k}, v_{t}, u_{1}$ appears in $G\langle H\rangle$ (Figure 3). Hence, H-tree is hamiltonian.

Figure 3: Hamilton-cycle
2. Assume that $G\langle H\rangle$ is planar and on contrary, $p \geq k+3$. Immediately, we observe that $\left(H+3 K_{1}\right) \subseteq G\langle H\rangle$. Since $K_{3,3}$ appears as an induced subgraph in ($H+3 K_{1}$), it follows that $K_{3,3}$ appears as a forbidden subgraph in $G\langle H\rangle$ and hence by Kuratowski theorem, $G\langle H\rangle$ is not planar. This is a contradiction to our assumption. Hence, $p \leq k+2$.
It is easy to prove the converse.

4. Dominations and b-coloring

For any graph $G, \gamma(G)$ denotes the domination number of G. A Roman domination function (in short, RDF) on G is a function $f: V(G) \rightarrow$ $\{0,1,2\}$ such that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of this function is $f(V(G))=\sum_{u \in V(G)} f(u)$. The minimum weight of a Roman dominating function on G is the Roman domination number of G and is denoted by $\gamma_{R}(G)$.[3] The following result gives both the domination and Roman domination numbers of path-trees and cycle-trees and its proof is obvious.

Proposition 4.1. Let $G\langle H\rangle$ be a H-tree of order $p \geq k+1$, where H is either P_{k} for $k \geq 4$ or C_{k} for $k \geq 5$. Then

1. $\gamma(G\langle H\rangle)= \begin{cases}1 & \text { if } p=k+1 . \\ 2 & \text { otherwise } .\end{cases}$
2. $\gamma_{R}(G\langle H\rangle)= \begin{cases}2 & \text { if } p=k+1 . \\ 3 & \text { if } p=k+2 . \\ 4 & \text { otherwise. }\end{cases}$

The b-chromatic number $b(G)$ of a graph G is the largest integer k such that G admits a proper k-coloring in which every color class has a representative adjacent to at least one vertex in each of the other color classes. Such a coloring of G is a b-coloring of $G[6]$ It is shown in [6] that for any path P_{k} and a cycle C_{k} for $k \geq 5, b\left(P_{k}\right)=b\left(C_{k}\right)=3$.

Next, we determine the b-chromatic number of the path-trees and cycle-trees. For this, we establish the following lemma.

Lemma 4.2. In any b-coloring of a graph $H+(p-k) K_{1}$, where H is any graph of order k and $p \geq k+1$, all the vertices of $(p-k) K_{1}$ receive the same color.

Proof. Let $u_{1}, u_{2}, \ldots, u_{k}$, be the vertices of H and let $v_{1}, v_{2}, \ldots, v_{p-k}$ be the vertices of I, where $I=(p-k) K_{1}$. If $p=k+1$, then $|I|=1$. The result obvious.
If $p \geq k+2$, then $|I| \geq 2$. If possible, then assume that in some b coloring of $H+I$, the vertices of I receive $q \geq 2$ different colors, say $c_{1}, c_{2}, \ldots, c_{q}$. Since I is independent and each vertex of I is adjacent to all vertices of H, it follows that there is no color dominating vertex corresponding to the colors $c_{i}(1 \leq i \leq q)$ in $H+I$. This is not possible in any b-coloring of $H+I$, because each color class has at least one color dominating vertex.

Theorem 4.3. Let $G\langle H\rangle$ be a H-tree of order $p \geq k+1$, where H is either a path P_{k} for $k \geq 4$ or a cycle C_{k} for $k \geq 5$. Then

1. $b\left(G\left\langle P_{k}\right\rangle\right)= \begin{cases}3 & \text { if } k=4 . \\ 4 & \text { otherwise } .\end{cases}$
2. $b\left(G\left\langle C_{k}\right\rangle\right)=4$.

Proof. By theorems 3.2, and 3.3, we have $G\langle H\rangle$ is isomorphic to $H+I$, where $I=(p-k) K_{1}$. We discuss two cases depending on k in (1) :
Case 1. Assume that $k=4$. Since $b\left(P_{k}\right)=2$ and from Lemma 4.2, all the vertices of I receive a single color, it follows that $b\left(G\left\langle P_{k}\right\rangle\right) \leq 3$.
To achieve the lower bound, color P_{k} properly by using the colors 1 and 2 and next, assign the color 3 to each vertex of I. Thus, we have $b\left(G\left\langle P_{k}\right\rangle\right)=3$.
Case 2. Assume that $k \geq 5$. Since it is shown in [6] that $b\left(P_{k}\right)=3$ and all the vertices of I receive a single color, it follows that $b\left(G\left\langle P_{k}\right\rangle\right) \leq 4$. To achieve the lower bound, color P_{k} properly by all three colors 1 , 2 and 3 and next, assign color 4 to each vertex of I. Thus, we have $b\left(G\left\langle P_{k}\right\rangle\right)=4$.
For (2), since $b\left(C_{k}\right)=3$ and all the vertices of I receive a single color, it follows that $b\left(G\left\langle C_{k}\right\rangle\right) \leq 4$. To achieve the lower bound, color C_{k} properly by using all three colors $1,2,3$, and next, assign the color 4 to each vertex of I. Thus, we have $b\left(G\left\langle C_{k}\right\rangle\right)=4$.

5. Line graphs and path (or cycle)-trees

In this section, we determine all the graphs, whose line graphs are either P_{k}-trees or C_{k}-trees for $k \geq 3$. We begin with the definition of line graph. The line graph $L(G)$ of a graph G, is the graph whose vertex set is the edge set of G and in which two vertices are adjacent, if the corresponding edges are adjacent in G.[5] Beineke [5, p.75] has shown that a graph is a line graph if and only if it has none of nine specified graphs as induced subgraphs, including $K_{1,3},\left(K_{1} \cup K_{2}\right)+$ $2 K_{1}$ and ($C_{5}+K_{1}$). The problem of obtaining all the graphs, whose line graphs are P_{k}-trees for $1 \leq k \leq 2$, is already done in [8,9] and therefore, we solve the problem for $k \geq 3$.

Proposition 5.1. A P_{k}-tree of order $p \geq k+1 ; k \geq 3$, is the line graph of a graph G if and only if both the following conditions hold:

1. $k=3 ; G$ is either $\left(K_{2}+2 K_{1}\right)$ or a triangle with exactly one end-edge at some vertex.
2. $k=4 ; G$ is a triangle with exactly two end-edges, one at some vertex.

Proof. We first show that G is connected. If not, then $L(G)$ is disconnected and by Definition 2.1 with $H=P_{k}, L(G)$ is not a P_{k}-tree. This is a contradiction. Since $L(G)$ is a P_{k}-tree of order $p \geq k+1$ and $k \geq 3$, by Theorem 3.2, P_{k}-tree T is isomorphic to $P_{k}+(p-k) K_{1}$. Suppose $k \geq 5$. Then T contains a subgraph F isomorphic to $P_{5}+K_{1}$. Since
$F \subseteq T$ and T is $L(G)$, immediately a forbidden subgraph isomorphic to $K_{1,3}$ appears in $L(G)$. This is impossible and it shows that $k \leq 4$. Thus, either $k=3$ or $k=4$.
Case 1. Assume that $k=3$. Further, we observe that $p \leq 5$; since otherwise, $P_{3}+3 K_{1}$ appears in T and $L(G)$ contains a forbidden subgraph $K_{1,3}$.

We discuss two possibilities depending on p.
1.1. If $p=4$, then $L(G)=P_{3}+K_{1}$ and hence G is isomorphic to triangle with exactly one end-edge at some vertex.
1.2. If $p=5$, then $L(G)=P_{3}+2 K_{1}$ and therefore, G is isomorphic to $K_{2}+2 K_{1}$.
Case 2. Assume that $k=4$. Moreover, we observe that $p=5$; since otherwise, $P_{4}+2 K_{1}$ appears in T and $L(G)$ contains a forbidden subgraph isomorphic to $\left(K_{1} \cup K_{2}\right)+2 K_{1}$. Since $k=4$ and $p=5$, it follows that $L(G)=P_{4}+K_{1}$ and hence G is isomorphic to a triangle with exactly two end-edges, one at some vertex.

It is easy to prove the converse.
Finally, we determine all the graphs whose line graphs are C_{k}-trees for $k \geq 3$. However for $k=3$, this problem is solved in [8] and now we solve this problem, for $k \geq 4$.

Proposition 5.2. There are only two graphs whose line graphs are $C_{k}{ }^{-}$ trees for $k \geq 4$. These graphs are $K_{2}+2 K_{1}$ and K_{4}.

Proof. Suppose that $L(G)$ is a C_{k}-tree of order $p \geq k+1 ; k \geq 4$. Clearly, G is connected. Assume that $k \geq 5$. Then $p \geq 6$ and immediately, $L(G)$ contains a subgraph F isomorphic to $C_{k}+K_{1}$. There are two possibilities, depending on k :

1. If $k=5$, then $F=C_{5}+K_{1}$ is a forbidden subgraph of $L(G)$.
2. If $k \geq 6$, then F contains a forbidden subgraph isomorphic to $K_{1,3}$.

In either case, we arrive at a contradiction. Hence, $k=4$. Furthermore, we observe that $p \leq 6$; since otherwise, $L(G)$ contains a subgraph F isomorphic to $C_{4}+3 K_{1}$. It is easy to check that a forbidden subgraph isomorphic to $K_{1,3}$ appears in F and hence in $L(G)$.

Next, we discuss two possibilities depending on p.

1. If $p=5$, then $L(G)=C_{4}+K_{1}$ and hence $G=K_{2}+2 K_{1}$.
2. If $p=6$, then $L(G)=C_{4}+2 K_{1}$ and hence $G=K_{4}$.

6. Relation between P_{k}-trees and split graphs

A nonempty subset S of $V(G)$ is an independent set $I(G)$ in a graph G if no two vertices of S are adjacent in G. A nonempty subset K of $V(G)$ is a complete set $K(G)$ in G if every two vertices of K are adjacent in G. The concept of a split graph appears in [4]. A split graph is defined to be a graph G, whose vertex set $V(G)$ can be partitioned into a
complete set K and an independent set I such that $G=(K \cup I \cup(K, I))$, where (K, I) denotes a set of edges $x y$ for $x \in K$ and $y \in I$. Notice that the partition $V(G)=K \cup I$ of a split graph G will not be unique always. Let us denote a split graph G with its bipartition (K, I) by $G(K, I)$. In [4, Theorem 6.3], it is proved that a graph G is a split graph if and only if G contains no induced subgraph isomorphic to $2 K_{2}, C_{4}$ or C_{5}.

Now, we obtain the conditions under which P_{k}-trees to be the split graphs. We begin with the following definitions.

Definition 6.1. A double-star $D(m, n)$ for $m, n \geq 1$; is a tree, obtained from a complete graph K_{2}, by joining m isolated vertices to one end of K_{2} and n isolated vertices to the other end of K_{2}.

Definition 6.2. For any triangle K_{3} with vertices a, b and c, there are three special families of K_{2}-trees as follows :

1. A m-graph for $m \geq 1$, denoted by $T(m)$, is a K_{2}-tree, obtained from K_{3}, by joining m isolated vertices to both a and b of K_{3}.
2. A (m, n)-graph for $m, n \geq 1$, denoted by $T(m, n)$, is a K_{2}-tree, obtained from $T(m)$, by joining n isolated vertices to both b and c of K_{3} in $T(m)$.
3. A (m, n, k)-graph for $m, n, k \geq 1$, denoted by $T(m, n, k)$, is a K_{2}-tree, obtained from $T(m, n)$, by joining k isolated vertices to both a and c of K_{3} in $T(m, n)$.

Proposition 6.3. A P_{k}-tree of order $p \geq k+1$, is a split graph if and only if the following statements hold:

1. $k=1$. There are only two split graphs:
a) $G\left(K_{1}, \bar{K}_{p-1}\right)$ is a star $K_{1}+K_{p-1}^{-}$.
b) $G\left(K_{2}, \bar{K}_{p-2}\right)$ is a double-star $D(m, n)$, where $(m+n+2)=p ; m, n \geq 1$.
2. $k=2$. There are only two split graphs:
a) $G\left(K_{2}, \bar{K}_{p-2}\right)$ is a K_{2}-tree $K_{2}+\bar{K}_{p-2}$.
b) $G\left(K_{3}, \bar{K}_{p-3}\right)$ is one of the following three K_{2}-trees : $T\left(n_{1}\right)$ for $n_{1}+3=$ $p ; T\left(n_{1}, n_{2}\right)$ for $n_{1}+n_{2}+3=p$ and $T\left(n_{1}, n_{2}, n_{3}\right)$ for $n_{1}+n_{2}+n_{3}+3=p$.
3. $k=3$. Either $G\left(K_{2}, \bar{K}_{2}\right)$ or $G\left(K_{3}, K_{1}\right)$ is a P_{3}-tree $P_{3}+K_{1}$.
4. $k=4 . G\left(K_{3}, \bar{K}_{2}\right)$ is a P_{4}-tree $P_{4}+K_{1}$.

Proof. Suppose that a P_{k}-tree of order $p \geq k+1$, is a split graph of the form : $G(K, I)$. Immediately, $k \leq 4$; since otherwise, $2 K_{2}$ appears as a forbidden subgraph in P_{k}.
We discuss three cases, depending on k.
Case 1. Assume that $k=1$. Then P_{k} is K_{1}. Clearly, a P_{k}-tree T is a nontrivial tree. In this case, the star $K_{1}+\bar{K}_{p-1}$ and double- stars $D(m, n)$ with $(m+n=p-2 ; m, n \geq 1)$, are the only split graphs of the
form: $G\left(K_{1}, \bar{K}_{p-1}\right)$ and $G\left(K_{2}, \bar{K}_{p-2}\right)$, respectively; since otherwise, $2 K_{2}$ appears immediately as a forbidden subgraph in T.
Case 2. Assume that $k=2$. Then P_{k} is K_{2}. Clearly, the notion of K_{2}-tree is equivalent to the notion of 2-tree.[7] By (3) of Remark 2.2 (with $k=2$), a K_{2}-tree T is 2 -connected, triangulated and K_{4}-free. Consequently, the complete sets K in T are the only K_{2} and K_{3}. Next, there are two possibilities to discuss on K.
2.1. If $K=K_{2}$, then T is isomorphic to $K_{2}+\bar{K}_{p-2}$, is the split graph of the type: $G\left(K_{2}, \bar{K}_{p-2}\right)$.
2.2. If $K=K_{3}$, then one of the following types of K_{2}-trees : $T\left(n_{1}\right)$, with $n_{1}+3=p ; T\left(n_{1}, n_{2}\right)$ with $\left(n_{1}+n_{2}+3\right)=p$ and $T\left(n_{1}, n_{2}, n_{3}\right)$ with $\left(n_{1}+n_{2}+n_{3}+3\right)=p$, is a split graph of the form: $G\left(K_{3}, \bar{K}_{p-3}\right)$.
Case 3. Assume k such that ($3 \leq k \leq 4$). Since $k \geq 3, P_{k}$ contains P_{3} as an induced subgraph. By (2) of Corollary 2.5, a P_{k}-tree of order $p \geq k+2$, contains a subgraph isomorphic to $P_{k}+\bar{K}_{2}$. Immediately, a forbidden subgraph C_{4} appears in $P_{3}+\bar{K}_{2}$ and hence, in $P_{k}+\bar{K}_{2}$. This is a contradiction and hence proves that $p=k+1$. Now, we discuss two possibilities.
3.1. $k=3$. Then both K_{3} and K_{4} are the complete sets in a P_{3}-tree of order 4. This shows that P_{3}-tree $P_{3}+K_{1}$ is a split graph either of the type: $G\left(K_{2}, \bar{K}_{2}\right)$ or $G\left(K_{3}, K_{1}\right)$.
3.2. $k=4$. Then K_{3} is the only complete set in a P_{4}-tree of order 5. This shows that P_{4}-tree $P_{4}+K_{1}$ is a split graph of the type $G\left(K_{3}, \bar{K}_{2}\right)$.

It is easy to prove the converse.
Open Problem 3. Determine the conditions under which the C_{k}-trees for $k \geq 3$, are the split graphs.

7. Acknowledgment

Research was supported by UGC-SAP DRS-II(2015) for the first author. Research was supported by UGC-BSR-SRF, Research Fellowship, Government of India, New Delhi, India for the second author.

References

[1] S. Arnborc and A. Proskurowski, "Characterization and recognition of partial 3-trees," SIAM J. Alg. Discrete. Math., vol. 7, no. 2, pp. 305-314, 1986.
[2] L. W. Beineke and R. E. Pippert, "Properties and characterizations of k-trees," Mathematica, vol.18, pp. 141-151, 1971.
[3] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi, "Roman domination in graphs," Discrete Math., vol. 278, pp. 11-22, 2004.
[4] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs. New York: Academic press, 1980.
[5] F. Harary, Graph Theory. Reading, MA: Addision-Wesley, 1969.
[6] M. Kouider and M. Maheo, "Some bounds for the b-chromatic number of a graph," Discrete Math., vol. 256 no. 1-2, pp. 267-277, 2002.
[7] H. P. Patil, "On the structure of k-trees," J. Combinatorics, Inform. and System Sci., vol. 11, no. 2-4, pp. 57-64, 1986.
[8] H. P. Patil, " k-trees and some graph valued functions," Discussiones Mathematicae, vol. VII, pp. 87-92, 1985.
[9] H. P. Patil and R. Pandiya Raj, "Characterizations of k-ctrees and graph valued functions," J Combinatorial Math. Combinatorial Comp., vol. 84, pp. 91-98, 2013.
[10] H. P. Patil and V. Raja, "Characterizations of H-graphs," Algorithms and Discrete Applied Mathematics: Proc. 2nd Int. Conf. CALDAM 2016, Thiruvananthapuram, India, Feb. 18-20, 2016, pp. 349-356, Springer.

[^0]: *Department of Mathematics, Pondicherry University; hpppondy@gmail.com
 ${ }^{\dagger}$ Research Scholar, Pondicherry University; vraja.math@gmail.com

