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Upper Vertex Triangle Free Detour Number
of a Graph

S. Sethu Ramalingam∗, I. Keerthi Asir†and S. Athisayanathan‡

Abstract

For a graph G, the x-triangle free detour set, the x-triangle
free detour number, the minimal x-triangle free detour set,
the upper x-triangle free detour number, are defined and
studied. Certain bounds are determined and the relation
with the vertex triangle free detour number of a graph is
found out. Some realization problems, properties related
to the upper vertex detour number, the upper vertex de-
tour monophonic number and the upper vertex geodetic
number are also studied.
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1. Introduction

Let graph G = (V, E) denote a finite undirected connected simple
graph. For basic definitions and terminologies, we refer to Chartrand
et al.[1] The concept of triangle free detour distance was introduced
by Keerthi Asir and Athisayanathan.[3] A path P is called a triangle
free path if no three vertices of P induce a triangle. For vertices u and
v in a connected graph G, the triangle free detour distance D△ f (u, v) is
the length of a longest u − v triangle free path in G. A u − v path of
length D△ f (u, v) is called a u − v triangle free detour.

The concept of vertex detour number of a graph was introduced
and studied by Santhakumaran and Titus.[4] For any vertex x in a
connected graph G, a set S of vertices of G is an x-detour set if each
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vertex v of G lies on an x − y detour in G for some vertex y in S . The
minimum cardinality of an x-detour set of G is defined as the x-detour
number of G, denoted by dx(G) or simply dx. An x-detour set of car-
dinality dx(G) is called a dx-set of G. An x - detour set S x is called a
minimal x-detour set if no proper subset of S x is an x-detour set. The
upper x-detour number, denoted by d+x (G), is defined as the maximum
cardinality of a minimal x-detour set of G.

The concept of vertex detour monophonic number of a graph was
introduced and studied by Titus et al. [8]. A chord of a path P is
an edge joining two non - adjacent vertices of P. A path P is called
monophonic if it is a chordless path. A longest u − v monophonic path
is called an u − v detour monophonic path. For any vertex x in a con-
nected graph G, a set S of vertices of G is an x-detour monophonic set
if each vertex v of G lies on an x− y detour monophonic in G for some
vertex y in S . The minimum cardinality of an x-detour monophonic
set of G is defined as the x-detour monophonic number of G, denoted
by dmx(G) or simply dmx. An x-detour monophonic set of cardinality
dmx(G) is called a dmx-set of G. An x-detour monophonic set S x is
called a minimal x-detour monophonic set if no proper subset of S x is
an x-detour monophonic set. The upper x-detour monophonic number,
denoted by dm+x (G), is defined as the maximum cardinality of a mini-
mal x-detour monophonic set of G.

The concept of vertex geodetic number of a graph was introduced
and studied by Santhakumaran and Titus.[5] For any vertex x in a
connected graph G, a set S of vertices of G is an x-geodetic set if
each vertex v of G lies on an x − y geodetic in G for some vertex y
in S . The minimum cardinality of an x-geodetic set of G is defined
as the x-geodetic number of G, denoted by gx(G) or simply gx. An x-
geodetic set of cardinality gx(G) is called a gx-set of G. An x-geodetic
set S x is called a minimal x-geodetic set if no proper subset of S x is
an x-geodetic set. The upper x-geodetic number, denoted by g+x (G), is
defined as the maximum cardinality of a minimal x-geodetic set of G.

The concept of triangle free detour number was introduced and
studied by Sethu Ramalingam et al.[6] A set S ⊆ V is called a triangle
free detour set of G if every vertex of G lies on a triangle free detour
joining a pair of vertices of S . The triangle free detour number dn△ f (G)
of G is the minimum order of its triangle free detour sets and any
triangle free detour set of order dn△ f (G) is called a triangle free detour
basis of G.

The concept of vertex triangle free detour number was introduced
and studied by Sethu Ramalingam, Keerthi Asir and Athisayanathan
[7]. For any vetex x in a connected graph G, a set S ⊆ V is called
a x-triangle free detour set of G if every vertex v in G lies on a x − y
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triangle free detour in G for some vertex y in S . The x-triangle free
detour number dn△ fx(G) of G is the minimum order of its x-triangle free
detour sets and any x-triangle free detour set of order dn△ fx(G) is a x-
triangle free detour basis of G. In this paper, we introduce upper vertex
triangle free detour number in a connected graph G. Throughout this
paper, G denotes a connected graph with at least two vertices. The
following theorems will be used in the sequel.

Theorem 1.1. [7] For any vertex x in G, x does not belong to any dn△ fx-
set of G.

Theorem 1.2. Let v be a vertex of a connected graph G. The following
statements are equivalent:
(i) v is a cut vertex of G.
(ii) There exist vertices u and w distinct from v such that v is on every
u − w path.
(iii) There exists a partition of the set of vertices V − {v} into subsets U
and W such that for any vertices u ∈ U and w ∈ W, the vertex v is on
every u − w path.[2]

Theorem 1.3. If G is a connected graph with k end-blocks, then dn△ fx(G) ≥
k − 1 for every vertex x in G.

Theorem 1.4. Let x be any vertex of a connected graph G.
(i) Every end-vertex of G other than the vertex x (whether x is end-vertex
or not) belongs to every x-triangle free detour set.
(ii) No cut vertex of G belongs to any x-triangle free detour set.[7]

Theorem 1.5. Let G be a connected graph with cut vertices and let S x
be an x-triangle free detour set of G. Then every branch of G contains
an element of S x ∪ {x}.[7]

Theorem 1.6. For every pair a, b of integers with 1 ≤ a ≤ b, there exists
a connected graph G with dx(G) = a and dn△ fx(G) = b.[7]

Theorem 1.7. For every pair a, b of integers with 1 ≤ a ≤ b, there exists
a connected graph G with dn△ fx(G) = a and dmx(G) = b.[7]

Theorem 1.8. For every pair a, b of integers with 1 ≤ a ≤ b, there exists
a connected graph G with dn△ fx(G) = a and gx(G) = b.[7]

Theorem 1.9. For any four positive integers a, b, c and d of with 2 ≤
a ≤ b ≤ c ≤ d, there exists a connected graph G such that dx(G) = a,
dn△ fx(G) = b, dmx(G) = c and gx(G) = d.[7]

2. Upper Vertex Triangle Free Detour Number

Definition 2.1. Let x be any vertex of a connected graph G. An x-
triangle free detour set S x is called a minimal x-triangle free detour
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set if no proper subset of S x is an x-triangle free detour set. The upper
x-triangle free detour number, denoted by dn+△ fx

(G), is defined as the
maximum cardinality of a minimal x-triangle free detour set of G.

Remark 2.2. For any vertex x in G, x does not belong to any minimal
x-triangle free detour set of G.

Proof. This follows from Theorem 1.1. �

Example 2.3. For the graph G given in Figure 2.1, a minimal vertex tri-
angle free detour sets and the upper vertex triangle free detour numbers
are given in Table 2.1.

x a
b c

d e f

g j k

h i

Figure 2.1 : G

For the graph G given in Figure 2.1, the sets S 1 = {d, f }, S 2 =

S 1 ∪ {g}, S 3 = S 2 ∪ {h} and S 4 = S 3 ∪ { j} are minimal x-detour set, min-
imal x-triangle free detour set, minimal x-detour monophonic set and
minimal x-geodetic set respectively and hence d+x (G) = 2, dn+△ fx

(G) = 3,
dm+x (G) = 4 and g+x (G) = 5. Thus the upper vertex detour number,
upper vertex triangle free detour number, upper vertex detour mono-
phonic number and upper vertex geodetic number of a graph G are
distinct.

a w z

u v

t y

Figure 2.2 : G
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Vertex t Minimal dn△ ft -set dn+△ ft
(G)

x {g, d, f } 3
a {x, g, d, f } 4
b {x, g, d, f } 4
c {x, g, d, f } 4
d {x, g, f } 3
e {x, g, d, f } 4
f {x, g, d} 3
g {x, d, f } 3
h {x, g, d, f } 4
i {x, g, d, f } 4
j {x, g, d, f } 4
k {x, g, d, f } 4

Table 2.1

Remark 2.4. For any vertex x in a connected graph G, every minimum
x-triangle free detour set is a minimal x-triangle free detour set, but the
converse is not true. For the graph G given in Figure 2.2, {a, u, v} is a
minimal t-triangle free detour set but it is not a minimum t-triangle free
detour set of G.

Theorem 2.5. Let x be any vertex of a connected graph G.
(i) Every end-vertex of G other than the vertex x(whether x is end-vertex
or not) belong to every minimal x-triangle free detour set.
(ii) No cut vertex of G belongs to any minimal x-triangle free detour set.

Proof. (i) Let x be any vertex of G. By Remark 2.2, x does not belong
to any minimal x-triangle free detour set. So let v , x be an end-
vertex of G. Then v is the terminal vertex of an x − v triangle free
detour and v is not an internal vertex of any triangle free detour so
that v belongs to every minimal x-triangle free detour set of G.

(ii) Let y be a cut vertex of G. Then by Theorem 1.2, there exists
a partition of the set of vertices V − {y} into subsets U and W such
that for any vertex u ∈ U and w ∈ W, the vertex y is on every u − w
path. Hence, if x ∈ U, then for any vertex w in W, y lies on every x−w
path so that y is an internal vertex of an x − w triangle free detour.
Let S x be any minimal x-triangle free detour set of G. Suppose S x
∩W = ϕ. Let w1 ∈ W. Since S x is an x-triangle free detour set, there
exists an element z in S x such that w1 lies in some x − z triangle free
detour P : x = z0, z1, ...,w1, ..., zn = z in G. Then the x − w1 subpath of
P and w1 − z subpath of P both contain y so that P is not a path in G.
Hence S x ∩W , ϕ. Let w2 ∈ S x ∩W. Then y is an internal vertex of an
x − w2 triangle free detour. If y ∈ S x, let S = S x − {y}. It is clear that
every vertex that lies on an x− y triangle free detour is also lies on an
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x−w2 triangle free detour. Hence it follows that S is an x-triangle free
detour set of G, which is a contradiction to S x is a minimal x-triangle
free detour set of G. Thus y does not belong to any minimal x-triangle
free detour set. Similarly if x ∈ W, y does not belong to any minimal
x-triangle free detour set. If x = y, then by Remark 2.2, y does not
belong to any minimal x-triangle free detour set. �

Remark 2.6. If x is an end-vertex of G, x does not belong to any minimal
x-triangle free detour set by Remark 2.2.

Theorem 2.7. Let G be a connected graph with cut vertices and let S x
be a minimal x-triangle free detour set of G. Then every branch of G
contains an element of S x ∪ {x}.

Proof. Suppose that there is a branch B of G at a cut vertex v such
that B contains no vertex of S x ∪ {x}. Then clearly, x ∈ V − (S x ∪V(B)).
let u ∈ V(B) − {v}. Since S x is a minimal x - triangle free detour set,
there is an element y ∈ S x such that u lies in some x − y triangle free
detour P : x = u0, u1, ..., u, ..., un = y in G. By Theorem 1.2 the x − u
subpath of P and u− y subpath of P both contain v, and it follows that
P is not a path, contrary to assumption. �

Since every end-block B is a branch of G at some cut-vertex, it
follows by Theorems 2.5 and 2.7 that every minimal x-triangle free
detour set of G together with the vertex x contains at least one vertex
from B that is not a cut-vertex. Thus the following corollaries are
consequences of Theorem 2.7.

Corollary 2.8. If G is a connected graph with k end-blocks, then dn+△ fx
(G) ≥

k − 1 for every vertex x in G. In particular, if x is a cut-vertex, then
dn+△ fx

(G) ≥ k.

Theorem 2.9. For any vertex x in G, 1 ≤dn△ fx(G) ≤dn+△ fx
(G) ≤n−1.

Proof. It is clear from the definition of x-triangle free detour set that
dn△ fx(G) ≥ 1. Since every minimum x-triangle free detour set is a
minimal x-triangle free detour set, dn△ fx(G) ≤dn+△ fx

(G). Also since the
vertex x does not belong to any minimal x-triangle free detour set, it
follows that dn+△ fx

(G) ≤ n − 1. �

Remark 2.10. The bounds for dn△ fx(G) and dn+△ fx
(G) in Theorem 2.9

are sharp. For the cycle Cn(n ≥ 4), dn△ fx(G) = dn+△ fx
(G) = 1 for any

vertex x in Cn. Also for the complete graph Kn, dn+△ fx
(G) = n - 1 for every

vertex x in Kn. All the inequalities in Theorem 2.9 can be strict. For the
graph G given in Figure 2.2, dn△ fw(G) = 2, dn+△ fw

(G) = 3 and n = 7. Thus
1 < dn△ fx(G) < dn+△ fx

(G) < n − 1.
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In the following theorem is an easy consequence of the definitions
of the minimum vertex triangle free detour number and the upper
vertex triangle free detour number of a graph.

Theorem 2.11. (i) For any tree T with k end vertices, dn+△ fx
(G) = k or

k − 1 according as x is a cut vertex or not.
(ii) For any vertex x in the cycle Cn of order n ≥ 4, dn+△ fx

(G) = 1.
(iii) For any vertex x in the complete graph Kn, dn+△ fx

(Kn) = n − 1.
(iv) For any vertex x in the complete bipartite graph Kn,m, dn+△ fx

(Kn,m) =
m or dn+△ fx

(Kn,m) = m − 1 if n = 1 and m ≥ 2.

Theorem 2.12. For every pair a, b of integers with 1 ≤ a ≤ b, there
exists a connected graph G with d+x (G) = a and dn+△ fx

(G) = b.

Proof. Case 1. For 1 ≤ a = b, any tree with a end vertices has the
desired properties, by Theorem 2.5 and Theorem 2.11(i)

Case 2. For 1 ≤ a < b. Let Pi : vi(1 ≤ i ≤ b − a) be a b − a copies
of a path of order 1 and P : x, u1, u2, u3 a path of order 4. Let G be
the graph obtained by joining each vi(1 ≤ i ≤ b − a) in Pi and u1 in
P and u2 in P. Adding a new vertices w1,w2, ...,wa and joining each
wi(1 ≤ i ≤ a) to u3. The resulting graph G of order b + 4 is shown in
Figure 2.3. Let S 1 = {x,w1,w2, ...,wa} be the set of all extreme vertices
of G. It is easily verified that S = S 1 − {x} is a x-detour set of G and so
by Theorem 1.4, dx(G) = |S | = a.

x u1 u2 u3

v1

v2

vb−a

w1

w2

wa

Figure 2.3 : G

Next, we show that dn△ fx(G) = b. By Theorem 2.5, every minimal
x-triangle free detour set of G contains S . Clearly, S is not a minimal
triangle free detour set of G. It is easily verified that each vi(1 ≤ i ≤
b − a) must belong to every minimal x-triangle free detour set of G.
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Thus T = S ∪ {v1, v2, ..., vb−a} is a minimal x-triangle free detour set of
G, it follows from Theorem 2.5 that T is a maximum cardinality of a
x-triangle free detour set of G and so dn+△ fx

(G) = b. �

Theorem 2.13. For every pair a, b of integers with 1 ≤ a ≤ b, there
exists a connected graph G with dn+△ fx

(G) = a and dm+x (G) = b.

Proof. Case 1. For 1 ≤ a = b, any tree with a end vertices has the
desired properties, by Theorem 2.5 and Corollary 2.7.

Case 2. For 1 ≤ a < b. Let Pi : si, ti(1 ≤ i ≤ b − a) be b − a copies of
a path of order 2 and P : x, u1, u2, u3 a path of order 4. Let G be the
graph obtained by joining each si(1 ≤ i ≤ b−a) in Pi to u1 in P and join-
ing each ti(1 ≤ i ≤ b−a) in Pi to u2 in P. Add new vertices w1,w2, ...,wa
and join each wi(1 ≤ i ≤ a) to u3. The resulting graph G of order
2b − a + 4 is shown in Figure 2.4. Let S 1 = {x,w1,w2, ...,wa} be the set
of all extreme vertices of G. It is easily verified that S = S 1 − {x} is a x-
trianlge free detour set of G and so by Theorem 2.5, dn△ fx(G) = |S | = a.

x u1 u2 u3

s1

s2

sb−a tb−a

t2

t1
w1

w2

wa

Figure 2.4 : G

Next, we show that dm+x (G) = b. By Theorem 1.5, every minimal
x-detour monophonic set of G contains S . Clearly, S is not a minimal
detour monophonic set of G. It is easily verified that each si(1 ≤ i ≤
b − a) or each ti(1 ≤ i ≤ b − a) must belong to every minimal x-detour
monophonic set of G. Thus T = S ∪ {s1, s2, ..., sb−a} is a minimal x-
detour monophonic set of G, it follows from Theorem 2.5 that T is a
maximum cardinality of a minimal x-detour monophonic set of G and
so dm+x (G) = b. �

Theorem 2.14. For every pair a, b of integers with 1 ≤ a ≤ b, there
exists a connected graph G with dn+△ fx

(G) = a and g+x (G) = b.

Proof. This follows from Theorem 2.13. �
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Theorem 2.15. For every pair a, b of integers with 1 ≤ a ≤ b, there is a
connected graph G with dn△ fx(G) = a and dn+△ fx

(G) = b for some vertex x
in G.

Proof. For a = b = 1, Pn(n ≥ 2) has the desired properties. For a = b
with b ≥ 2, let G be any tree of order n ≥ 3 with b end-vertices. Then
for any cut vertex x in G, dn△ fx(G) = a = dn+△ fx

(G) = b by Theorem

2.11(i). Assume that 1 ≤ a < b. Let F = K2 ∪ ((b− a+ 2)K1)+K2, where
let Z = V(K2) = {z1, z2}, Y = V((b − a + 2)K1) = {x, y1, y2, ..., yb−a+1} and
U = V(K2) = {u1, u2}. Let G be the graph obtained from F by adding
a − 1 new vertices w1,w2, ...,wa−1 and joining each wi to x. The graph
G is shown in Figure 2.5. Let W = {w1,w2, ...,wa−1} be the set of end
vertices of G.

First we show that dn△ fx(G) = a. By Theorem 1.3, dn△ fx(G) ≥
a − 1 + 1 = a. On the other hand, let S = {w1,w2, ...,wa−1, z1}. Then
D△ f (x, z1) = 4 and each vertex of F lies on an x−z1 triangle free detour.
Hence S is an x-triangle free detour set of G and so dn△ fx(G) ≤ |S | = a
Therefore, dn△ fx(G) = a. Also, we observe that a minimum x-triangle
free detour set of G is formed by taking all the end vertices and ex-
actly one vertex from Z.

Next we show that dn+△ fx
(G) = b. Let M = {w1,w2, ...,wa−1, y1, y2, ...,

yb−a+1}. It is clear that M is an x-triangle free detour set of G. We
claim that M is a minimal x-triangle free detour set of G. Assume, to
the contrary, that M is not a minimal x-triangle free detour set. Then
there is a proper subset T of M such that T is an x-triangle free detour
set of G. Let s ∈ M and s < T . By Theorem 1.4(i), clearly s = yi, for
some i = 1, 2, ..., b − a + 1. For convenience, let s = y1. Since y1 does
not lie on any x − y j triangle free detour where j = 2, 3, ..., b − a + 1,
it follows that T is not an x-triangle free detour set of G, which is a
contradiction. Thus M is a minimal x-triangle free detour set of G and
so dn+△ fx

(G) ≥ |M| = a − 1 + b − a + 1 = b.

x

wa−1

w2

w1
u2

z1 z2

u1

y1 y2 yb−a+1

Figure 2.5 : G
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Now we prove dn+△ fx
(G) ≤ b. Suppose that dn+△ fx

(G) > b. Let N be a
minimal x-triangle free detour set of G with |N | > b. Then there exists
at least one vertex, say, v ∈ N such that v < M. Thus v ∈ {u1, u2, z1, z2}.

Case 1. v ∈ {z1, z2}, say v = z1. Clearly W ∪ {z1} is an x-triangle free
detour set of G and also it is a proper subset of N, which is a contra-
diction to N is a minimal x-triangle free detour set of G.

Case 2. v ∈ {u1, u2}, say v = u1. Suppose u2 < N. Then there is at
least one y in Y such that y ∈ N. Cleary, D△ f (x, u1) = 3 and the only
vertices of any x − u1 triangle free detour are x, z1, z2, u1 and u2. Also
x, u2, z1, z2, u1, y is an x− y triangle free detour and hence N − {u1} is an
x-triangle free detour set, which is a contradiction to N is a minimal
x-triangle free detour set of G. Suppose u2 ∈ N. It is clear that the
only vertices of any x − u1 or x − u2 triangle free detour are x, u1, u2, z1
and z2. Since u1, u2 ∈ N, it follows that both N − {u1} and N − {u2} are
x-triangle free detour sets, which is a contradiction to N a minimal
x-triangle free detour set of G. Thus there is no minimal x-triangle
free detour set N of G with |N | > b. Hence dn+△ fx

(G) = b. �

Remark 2.16. The graph G of Figure 2.2 contains exactly three minimal
x-triangle free detour sets, namely, W ∪ {z1}, W ∪ {z2} and W ∪ (Y −
{x}). This example shows that there is no ”Intermediate Value Theorem”
for minimal x-triangle free detour sets, that is, if n is an integer such
that dn△ fx(G) < n < dn+△ fx

(G), then there exist a minimal x-triangle free
detour set of cardinality n in G.

Theorem 2.17. For any three positive integers a, b and c with a ≥ 2
and a ≤ c ≤ b, there exists a connected graph G with dn△ fx(G) = a,
dn+△ fx

(G) = b and a minimal x-triangle free detour set of cardinality c.

Proof. Let P : z1, z2, z3, z4 and Q : v1, v2, v3, v4 be two paths. Let H
be the graph obtained from P and Q by identifying the vertices z2 in
Q. Let G be the graph obtained from H by adding b new vertices
u1, u2, . . . ua−2, y1, y2, . . . , yb−c+1, x1, x2, ..., xc−a+1 and joining each ui(1 ≤
i ≤ a − 2) with z2; joining each yi(1 ≤ i ≤ b − c + 1) with z1 and z4 and
joining each xi(1 ≤ i ≤ c − a + 1) with v1 and v4 in H. The graph G is
shown in Figure 2.6.

Let S = {u1, u2, ..., ua−2} be the set of all extreme vertices of G and
let x = z2. Then by Theorem 1.4, every x-triangle free detour set of
G contains S and also for any vertex y ∈ V(G) − S , S ∪ {y} is not an
x-triangle free detour set of G. It is clear that S 1 = S ∪ {z4, v4} is a
minimum x-triangle free detour set of G and so dn△ fx(G) = |S 1| = a.
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z4 z3

y1 z1

y2

yb−c+1

x
z2 v2

v3 v4

v1 x1

x2

xc−a+1

u1
u2

ua−2

Figure 2.6 : G

Now we show that dn+△ fx
(G) = b. Let M = S ∪{y1, y2, ..., yb−c+1, x1, x2,

.., xc−a+1}. It is clear that M is an x-triangle free detour set of G. We
claim that M is a minimal x-triangle free detour set of G. Assume that
M is not a minimal x-triangle free detour set of G. Then there ex-
ists a proper subset of M1 of M such that M1 is an x-triangle free
detour set of G. Let w ∈ M and w < M1. By Theorem 2.5, ei-
ther w = yi(1 ≤ i ≤ b − c + 1) or w = x j(1 ≤ j ≤ c − a + 1). If
w = yi(1 ≤ i ≤ b − c + 1), then w does not lie on an x − z triangle free
detour path for any x − z triangle free detour for any z ∈ M1, which
is a contradiction. Thus M is a minimal x-triangle free detour set of
G and so dn+△ fx

(G) ≥ |M| = b. Also, it is clear that every minimal x-
triangle free detour set of G contains at most b elements and hence
dn+△ fx

(G) ≤ b. Hence dn+△ fx
(G) = b.

Finally we show that there is a minimal x-triangle free detour set
of cardinality c. Let T = S ∪ {z4, x1, x2, ...xc−a+1}. It is clear that T is
an x-triangle free detour set of G. We claim that T is a minimal x-
triangle free detour set. Assume that T is not a minimal x-triangle
free detour set of G. Then there is a T1 is an x-triangle free detour
set of G. Let t ∈ T and t < T1. By Theorem 2.5 (i), clearly, t = z4
or t = x j(1 ≤ j ≤ c − a + 1). If t = z4, then yi(1 ≤ j ≤ c − a + 1)
does not lie on any x − y triangle free detour path for some y ∈ T1,
which is a contradiction. If t = x j(1 ≤ j ≤ c − a + 1), then x j does not
lie on any x − y triangle free detour path for some y ∈ T1, which is
a contradiction. Thus T is a minimal x-triangle free detour set of G
with cardinality c. �

Theorem 2.18. For each positive integers a, b and c ≥ 3 with a < b,
there exists a connected graphs G such that R△ f (G) = a, D△ f (G) = b and
dn+△ f (G) = c for some vertex x in G.

Proof. We prove this theorem by considering three cases.
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Case 1. a = b = 1. Let G = Kc+1. It is easily seen that e△ f (x) = 1 for
every vertex x in G and so R△ f (G) = 1 = D△ f (G). Also, by Theorem
2.11(iii), dn+△ f (G) = c for every vertex x in G.

Case 2. 1 = a < b. Let Cb+2 : v1, v2, ....., vb+2, v1 be a cycle of or-
der b + 2. Let G be the graph obtained by adding n − 1 new vertices
u1, u2, u3, ......, uc−1 to Cb+2 and joining each of the vertices u1, u2, u3, ..., uc−1
to the vertex v1 and also joining each vertex vi(3 ≤ i ≤ b + 1) to the
vertex v1. The graph G is shown in Figure 2.7. It is easily verified that
1 ≤ e△ f (x) ≤ b for any vertex x in G and e△ f (v1) = 1, e△ f (v2) = b. Then
R△ f (G) = 1 and D△ f (G) = b. Let S = {v2, vb+2, u1, u2, ..., uc−1} be the set
of all extreme vertices of G and let x = v2. Clearly S is the unique
minimal triangle free detour set of G and so dn+△ f (G) = |S | = c.

vb vb+1

vb+2

v1

v2

v3v4

u1

u2

uc−1

Figure 2.7: G

Case 3. 2 ≤ a ≤ b. Let H be a graph obtained from a cycle Ca+2 :
v1, v2, ......, va+2, v1 of order a + 2 and a path Pb−a+1 : u0, u1, u2, ..., ub−a of
order b − a + 1 by identifying the vertex va+1 in Ca+2 and u0 in Pb−a+1;
also join each vertex ui(1 ≤ i ≤ b − a) in Pb−a+1 with va+2 in Ca+2.
Now, let G be the graph obtained from H by adding c− 1 new vertices
w1,w2, ...,wc−1 and join each wi(1 ≤ i ≤ c − 1) with v2 and va+2 in H.
The graph G is shown in Figure 2.8.

It is easily verified that a ≤ e△ fx ≤ b for any vertex x in G. Also,
e△ fx(va+2) = a and e△ fx(v1) = b. It follows that R△ f (G) = a, D△ f (G) = b.
Now, let x = ub−a and let S = {v1,w1,w2, ...,wc−1}. Since every vertex
of G lies on an x − y, where y ∈ S , triangle free detour path, S is an
x-triangle free detour set of G. Then there exists a vertex z in S such
that z < S 1. It is clear that z is either v1 or wi(1 ≤ i ≤ c− 1). In all cases
z does not lie on any x − u, where u ∈ S 1, triangle free detour path, it
follows that S 1 is not an x-triangle free detour set of G. This shows
that S is a minimal x-triangle free detour set of G and so dn+△ fx

(G) ≥ c.
Also, it is clear that any minimal x-triangle free detour set of G con-
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tains at most c−1 elements and hence dn+△ fx
(G) ≤ c. Thus dn+△ fx

(G) = c.

va

wc−1

w2

w1

v1

v2

u0
va+1

va+2

u1

u2 ub−a−1
ub−a

Figure 2.8: G

�

Theorem 2.19. For any four positive integers a, b, c and d of with
2 ≤ a ≤ b ≤ c ≤ d, there exists a connected graph G such that d+x (G) = a,
dn+△ fx

(G) = b, dm+x (G) = c and g+x (G) = d.

Proof. Let 2 ≤ a ≤ b ≤ c ≤ d. Let P : x, a, b, c, d, e, f be a path of order
7 and adding a − 1 new vertices v1, v2, v3, v4, ....., va−1 to f .

x a b c d e f

g1

g2

gb−a

h1

h2

hc−b

k1

k2

kc−b

l1

l2

ld−c

e

m1

m2

md−c

f

va−1

v2

v1

Figure 2.9: G

Let Pi : gi(1 ≤ i ≤ b − a) be a b − a copies of K1 and joining each
gi(1 ≤ i ≤ b − a) in Pi to a and b in P. Let P j : h j, k j(1 ≤ j ≤ c − b) be
a c − b copies of a path of length 2 and joining each h j(1 ≤ j ≤ c − b)
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in P j to b in P and joining each k j(1 ≤ j ≤ c − b) in P j to c in P. Let
Pk : lk,mk(1 ≤ k ≤ d − c) be a d − c copies of a path of order 2 and
joining each lk(1 ≤ k ≤ d−c) in Pk to c in P and joining mk(1 ≤ k ≤ d−c)
in Pk to e in P. The resulting graph G is shown in Figure 2.9

It is easily verify that S 1 = {d, v1, v2, ....., va−1} is a minimal x-detour
set, S 2 = S 1 ∪ {g1, g1, g2, ....., gb−a} is a minimal x-triangle free detour
set, S 3 = S 2 ∪ {h1, h2, h3, ....., hc−b} is a minimal x-detour monophonic
set and S 4 = S 3 ∪ {l1, l2, l2, ....., ld−c} is a minimal x-geodetic set. Thus
d+x (G) = a, dn+△ fx

(G) = b, dm+x (G) = c and g+x (G) = d.
�
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