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Abstract  

Studies with GONG Standard Solar Evolution Models 
sampling the evolution of the sun from its ZAMS stage 
show the following. The location of the tachocline zone is 
nearly fixed as it is not affected by shell burning although 
it co-moves with  the expansion of the sun up to the 
present age of 4.6 Gyr. The luminosity transport time 
scale of the sun is entirely dominated by photon diffusion 
and during the evolution has decreased from over 204000 
years to 187000 years. The rotational inertia of the sun 

shows a small gradual increase from 𝟔. 𝟕𝟑 × 𝟏𝟎𝟒𝟔 kgm2 to 

𝟕. 𝟎𝟗 × 𝟏𝟎𝟒𝟔 𝐤𝐠𝐦𝟐 at present but the inertia constant 
decreases from 0.0911 to 0.0736 during the same period. 

Keywords: Standard solar evolution models, Tachocline zone, 
Radiative and convective energy transport timescale, Rotational 
inertia, Inertia constant 

1. Introduction  

The Model S (also labeled No.24) is a standard solar evolution 
model (SSEM) evolved to the estimated age of 4.6 Gyr as part of the 
GONG project [1]. The GONG group applied the methods of 
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helioseismic analysis to this high resolution model which lists data 
over 2482 grid points (concentric spherical shells) to determine the 
location of the tachocline zone (TZ) at the bottom of the convective 
zone (CZ). In Model S (SSEM No.24) this location was determined 
by [1] as corresponding to a radius fraction of 0.7112 and a mass 
fraction of 0.9753 of the model. A study of the dependence of the 
TZ location on the age of the solar evolution has been made by 
studying similar SSEMs of the GONG project from zero age main 
sequence (ZAMS) stage onwards. This study is done (section 2) on 
15 GONG SSEMs [2] and one YREC SSEM No.741 [3] of nearly 
same age as Model S. As the determination of the TZ location 
implied that the extent of the solar radiative zone (RZ) is also 
known in all the SSEMs, it was decided to investigate the variation 
with model age of the characteristic luminosity transport timescale 
(section 3) and the rotational moment of inertia (section 4) as the 
required opacity and density data were available for all model grid 
points.  

A remark on the nature of the tachocline zone is relevant here. This 
region is also referred to in literature as the interface layer, or 
overshoot zone.  It is known [4] that the bulk of the radiative 
interior (RZ) slowly rotates almost like a rigid body and it ends in a 
region of radial shear known as tachocline. This shear is due to the 
latitude dependent differential rotation [5] in the entire convective 
zone. The rotation rate of the RZ is known to be nearly equal to the 
rotation rate of middle latitudes on the sun which corresponds to a 
value midway between the slow polar rate and the faster equatorial 
rate. This rotation frequency is about  4.33 × 10−7𝐻𝑧 corresponding 
to a sidereal rotation period of about 26.7 days. This value will be 
used to estimate the angular momentum of the sun in section 4.  

2. Study of the Tachocline Zone (TZ) location in SSEMs 

The TZ is a thin layer below the bottom of convective zone (CZ) in 
the sun where the solar radiative zone (RZ) ends. The bottom shell 
of the CZ is identified by the constancy of the hydrogen mass 
fraction X throughout the CZ and hence the previous shell is taken 
as the location of the TZ. These details may be seen in Figure 1 
which plots Model S (SSEM #24) and in Figure 2 which plots zero 
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age model (ZAMS, SSEM #01) of the sun. The upper parts of both 
figures show normalized temperature, density, pressure, 
luminosity, radius, X and Y as functions of the mass fraction 
whereas the lower parts show them as functions of the radius 
fraction. The vertical blue dotted line marks the location of the 
tachocline zone (TZ) which separates the inner radiative zone (RZ) 
containing about 97.5 % of mass at left from the outer convective 
zone (CZ) containing 2.5%  mass at right (see Table 1). The step up 
in X and step down in Y may be seen at TZ in Figure 1. This 
stepping is absent in the ZAMS model of the sun shown in Figure 2 
since the chemical composition is uniform at zero age. The grid 
point number of the TZ location was determined from the model 
data after drawing normalized plots similar to Figure 1 for all the 
bottom of the CZ. 

 

                   

Fig. 1. The above graphs show all the normalized parameters of the Model S (SSEM #24). 
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16 SSEMs. This TZ grid point number is listed in the fourth column 
of Table 1 along with the corresponding values of the radius 
fraction, mass fraction and X for all the SSEMs studied. Only in the 
case of the ZAMS model (SSEM #01) in which 𝑋 is uniform the 
local polytropic index was also computed and plotted to identify 
the step up in 𝑋 and the step down in Y (helium) and Z (metals) at 
TZ in all the SSEMs is shown in Figure 3 with more detail for 𝑋 in 
the graph at top in which a black ×-mark locates TZ at the base of 

Table 1. The first three columns list the basic data of the 16 SSEMs. The 

next four columns show the location of the tachocline zone (TZ) as shell 
number, its radius fraction depth 𝒇𝑻𝒁 , Mass fraction depth, X in the 
convective zone (CZ) and the buoyant diffusion contribution dX at CZ. 

SSEM   Age          R           Shell         𝑓𝑇𝑍            Mr/M             X             dX      

No.   Gyr         km           No.       (𝑟/𝑅)𝑇𝑍     (𝑀𝑟/𝑀)𝑇𝑍        𝑋𝐶𝑍        𝑋𝐶𝑍 − 𝑋01                                                                                                               

 01        0.000      609615      990      0.721728     0.969772      0.7091      0.0000 

 03        0.051      611212      950      0.720744     0.969454      0.7094      0.0003 

 05        0.185      614395      951      0.720486     0.969517      0.7102      0.0011 

 07        0.386      617917      952      0.719594     0.969618      0.7115      0.0024 

 09        0.660      622193      954      0.718829     0.969921      0.7132      0.0041 

 11        1.010      627537      957      0.718112     0.970396      0.7153      0.0062 

 13        1.442      634239      961      0.717352     0.971018      0.7180      0.0089 

 15        1.959      642636      966      0.716418     0.971757      0.7212      0.0121 

 17        2.565      653172      973      0.715970     0.972769      0.7250      0.0159 

 18        2.903      659430      976      0.714841     0.973125      0.7269      0.0178 

 20        3.603      673385      984      0.713478     0.974067      0.7312      0.0221 

 21        3.919      680171      988      0.712921     0.974491      0.7331      0.0240 

 22        4.213      686811      992      0.712501     0.974898      0.7348      0.0257 

 23        4.407      691330      995      0.712039     0.975118      0.7360      0.0269 

 24        4.600      695990      997      0.711177     0.975251      0.7370      0.0279 

 741      4.550      695978      576      0.711115     0.975201      0.7362      0.0309 
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the CZ. In the left half of Figure 3, the top down order of the graphs 
for X starts with age zero at top left and end at present age below.  

            

Fig. 2. The graphs show all the normalized parameters of the ZAMS Model  (SSEM #01). 

In the right half notice that this order is completely reversed at TZ. 
In the middle and bottom graphs, helium (Y) and metals (Z) 
profiles are drawn for 15 GONG SSEMs. In the CZ at right which 
extends beyond the TZ at about 0.71% of r/R the buoyant diffusion 
is continuously increasing the initial ZAMS stage value of X  but 
the continued settling into the core is depleting the levels of Y and 
Z.  In the core at left of Figure 3, it is seen that X decreases while Y 
and Z increase with age.      

The determination of the TZ location as a grid number implies an 
inherent error of at least one shell width of about 600 kilometers. 
This means that the width of the solar radiative zone (RZ) is also 
known to a good accuracy and its variation as a total fraction of 
model radius is negligible throughout the 4.6 Gyr period of solar 
evolution. This width is listed in the 5th column of Table 1 while 
the mass fraction up to this point is listed in the 6th column. 
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However due to the expansion caused by shell burning the solar 
radius is slowly increasing with age and hence the TZ location is  

                 

          

Figure 3. At the top graph, the profile of hydrogen mass fraction 𝑋 is drawn for all 

the 15 GONG SSEMs [1] from ZAMS stage (blue dashed line) to present solar age 

of 4.6 Gyr for GONG SSEM No. 24 (black dashed line). This almost coincides with 

the profile data from YREC SSEM model No. 741 [3] at age 4.55 Gyr also shown as 

red dashed line. The lower two graphs show Y and Z profiles (see text). 

co-moving outwards. But the TZ location as a fraction of the solar 
radius appears to contract by a negligible amount. This can be 
clearly seen in Figure 3. The mean value of the mass fraction is thus 
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about 97.3% at a radius fraction of 71.7%. This observation 
contradicts the basic premise of Eddington’s polytropic solar model 
that the entire sun is in radiative equilibrium [17].  

3. Study of the Luminosity Transfer Time Scale in SSEMs 

3.1 Introduction 

The luminosity transfer time from the center of the sun to its 
photosphere is the sum of photon diffusion time through the RZ up 
to the tachocline and the convective energy transfer time through 
the CZ up to the photosphere. The calculation of the photon 
diffusion time employs the same method adopted by [6]. In [6] the 
photon diffusion time was calculated in a cruder solar model 
available by treating the path of photons as a 3-D random walk 
problem with variable local mean free path (ℓ𝑚𝑓𝑝). In each shell 
the ℓ𝑚𝑓𝑝 has a reciprocal dependence on the product of density 
and mean opacity. Hence an accurate estimate of the photon 
diffusion timescale in all the SSEMs is now done here since a state 
of the art computed Rosseland mean opacity (mass absorption 
coefficient) and density data are also available for all the grid 
points. This computation will first be described below starting with 
a brief description of the discretized expressions used here.  

The local mean free path or step-length in a given spherical shell 
labeled as grid point  𝑖 is given by, 

                                                  ℓ𝑖 =  𝜅𝑖𝜌𝑖 
−1                                      (3.1) 

In a given shell of radius 𝑟𝑖  and thickness 𝑑𝑟𝑖 ≡   𝑟𝑖+1 − 𝑟𝑖  the 
number 𝑛𝑖  of such equal step length vectors required to cross the 
shell would be quite large since for each step vector all directions 
are equally probable. In each shell the step length is different in 
view of equation (3.1). Both the Rossland mass and linear mean 
absorption coefficients are shown plotted for all the SSEMs together 
in Figure 4 at the top and bottom respectively along with marking 
of the tachocline zone (TZ) at the interface between RZ and CZ. At 
the top it is seen that the opacity gradually rises in the radiative 
interior up to the TZ mainly due to free-free and bound-free 
absorption. It begins to rise steeply in the convective zone and 
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becomes very high reaching levels of 100000 in the envelope. The 
linear opacity decreases slowly until TZ, then increases steeply in 
the envelope and finally becomes very small in the photosphere 
allowing a rapid escape of photons (radiation). Therefore the total 
number, N, of steps a photon requires to reach the radial distance 𝑟𝑠  
in the sun starting from the center and passing through 𝒔 shells can 
be written as 

                                                  𝑁𝑠 =   𝑛𝑖
𝑠
𝑖=1                                        (3.2)     

The mean square step length up to shell 𝒔,  𝑙2 𝑠  is then given by 

                                              ℓ2 𝑠 =  
1

𝑁𝑠
  𝑛𝑖ℓ𝑖

2𝑠
1                                    (3.3) 

   

 

 

 

 

 

 

 

 

 

 

 

   

  

 

Fig. 4. The Rosseland mean linear absorption coefficient (cm-1) in all the 15 solar models is plotted 

above and the Rosseland mean mass absorption coefficient (opacity,  cm2/g) is plotted at the top.   

Chandrasekhar [7] showed that mean square step length (3.3) is 
related to the mean square displacement  𝑟2 𝑠 by, 

                              3  𝑟2 𝑠 = 𝑁𝑠   ℓ2 𝑠 =  𝑛𝑖ℓ𝑖
2𝑠

1                                   (3.4) 
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This expression can now be written, with the displacement  𝒓𝒔−𝟏 as 
the radius of previous shell 𝒔 − 𝟏, as   

                                            3 𝑟𝑠−1
2 =  𝑛𝑖ℓ𝑖

2𝑠−1
1                                    (3.5)        

Then equation (3.4) can then be rewritten as, 

                              3 𝑟𝑠
2 =  𝑛𝑖ℓ𝑖

2 =   𝑛𝑖ℓ𝑖
2𝑠−1

1 + 𝑛𝑠ℓ𝑠
2 𝑠

1                    (3.6) 

The number of steps in this shell is obtained by subtracting (3.5) 
from (3.6) as 

                                       𝑛𝑠 =   3  𝑟𝑠
2 −  𝑟𝑠−1

2  ℓ𝑠
2                                 (3.7)        

The photon then spends a time  ∆𝒕𝒔 =  𝒏𝒔 ℓ𝑠 /𝒄   in this shell where c 
is the speed of light. Then the total time spent in all the 𝒔 shells 
comprising the RZ in the sun is the radiative diffusion time 𝒕𝒓𝒂𝒅 
given by (noting that s is a dummy index), 

                  𝑡𝑟𝑎𝑑 =   ∆𝑡𝑖 = 𝑠
𝑖=1

3𝑅2

𝑐
   𝑓𝑖

2 −  𝑓𝑖−1
2  ℓ𝑖 𝑠

𝑖=1                   (3.8)  

where R is the radius of the SSEM considered and the radius 
fraction of the shell s is defined by 𝑓𝑠 =  𝑟𝑠/𝑅. The number of shells 
included in the summation and the radius fraction 𝑓𝑇𝑍  of TZ are 
listed in columns 4 and 5 respectively in Table 1.  In this equation 
the expression under summation has the dimension of inverse 
length. It represents the reciprocal of an effective mean free path 
 𝓵 𝒆𝒇𝒇  for the entire RZ up to  𝑓𝑇𝑍  and is given by, 

                             𝓵 𝒆𝒇𝒇 =    𝒇𝒊
𝟐 − 𝒇𝒊−𝟏

𝟐  /ℓ𝑖
𝑻𝒁
𝒊=𝟏  

−𝟏
                         (3.9) 

The photon diffusion time given by (3.8) in the SSEM is then also 
written as, 

                                                𝒕𝒓𝒂𝒅 =
𝟑𝑹𝟐

𝒄 𝓵 𝒆𝒇𝒇
                                    (3.10) 

The maximum value of 𝓵𝒎𝒇𝒑 at TZ, the photon diffusion time 
needed to reach TZ in each SSEM, the average value   𝓵𝒎𝒇𝒑  up to 
TZ, the number of random steps needed to reach TZ and the ratio 
of luminosity at SSEM age to the present luminosity are 
respectively listed Table 2. The photon diffusion timescale 𝒕𝒓𝒂𝒅 is 
plotted against radius fraction depth for all the SSEMs in Figure 5. 
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Table 2.  Listed are SSEM No., age, 𝒇𝑻𝒁,  𝓵𝒎𝒇𝒑,  𝒕𝒓𝒂𝒅,   𝓵𝒎𝒇𝒑  , 

number of steps to reach TZ  and the Luminosity ratio. 

--------------------------------------------------------------------------------------- 

SSEM   Age       𝒇𝑻𝒁       𝓵𝒎𝒇𝒑       𝒕𝒓𝒂𝒅        𝓵𝒎𝒇𝒑      Steps      𝑳/𝑳⊙ 

No.      Gyr     (r/R)TZ       cm         105 yrs      cm       × 𝟏𝟎𝟐𝟓 

--------------------------------------------------------------------------------------- 

01      0.000    0.721728     0.1288     2.045     0.0576      1.243      0.709 

03      0.051    0.720744     0.1293     2.043     0.0580      1.240      0.712 

05      0.185    0.720486     0.1311     2.039     0.0587      1.236      0.720 

07      0.386    0.719594     0.1347     2.031     0.0596      1.231      0.731 

09      0.660    0.718829     0.1396     2.022     0.0607      1.226      0.745 

11      1.010     0.718112    0.1462     2.009     0.0622      1.220      0.763 

13      1.442    0.717352     0.1550     1.994      0.0640     1.213      0.786 

15      1.959    0.716418     0.1666     1.975      0.0663     1.205      0.815 

17      2.565    0.715970     0.1813     1.953      0.0693     1.197      0.851 

18      2.903     0.714841    0.1909     1.939      0.0711     1.193      0.873 

20      3.603    0.713478     0.2127     1.911      0.0752     1.185      0.922 

21      3.919     0.712921    0.2237     1.899      0.0773     1.182      0.945 

 22     4.213     0.712501    0.2344     1.886      0.0793     1.180      0.968 

 23     4.407     0.712039    0.2422     1.878      0.0807     1.178      0.984 

 24     4.600     0.711177    0.2503     1.870      0.0822     1.177      1.000 

 741   4.550     0.711115    0.2540     1.883      0.0816     1.197      1.000 

 

3.2  Discussion of the Radiative Diffusion Time Scale 

In the left half of Figure 5 the graphs of X and ℓ𝑚𝑓𝑝 for each SSEM follow 
a similar order from age zero at top to 4.6 Gyr last up to a radius fraction 
depth of about 0.136. In this region the  ℓ𝑚𝑓𝑝 is less than 0.009 cm for the 
zero age SSEM and it decreases to about 0.005cm at age 4.6 Gyr. Beyond 
this region a reversal of the order occurs and the details are shown using 
an expanded scale in the box inset of Figure 5.  It is clear that increasing  
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Fig. 5. The local mean free path (𝒍𝒎𝒇𝒑) and the hydrogen fraction X are plotted as a function of 
normalized model radius for each SSEM from age zero to the present. 

local density due to increase of 𝜇 𝑋, 𝑌, 𝑍   and opacity causes ℓ𝑚𝑓𝑝 to 

decrease in this region. The graphs of X show a similar reversal around a 

radius fraction depth of 0.4 which is maintained in the right half of Figure 

5 all the way up to the model surface along with the corresponding 𝑙𝑚𝑓𝑝. 

Here the ℓ𝑚𝑓𝑝 reaches a local maximum at  TZ, then  decreases slowly to 

a minimum at a depth of about 0.97 and finally becomes very large as 

photons escape from the photosphere. This part of the  ℓ𝑚𝑓𝑝  graph may 

be compared with the Figure 1 of [6] which shows a double hump feature 

that is certainly due to the physics behind the solar model used in that 

paper. This feature is not present in any graph of ℓ𝑚𝑓𝑝  in Figure 5 

including the SSEM No.741 shown by dashed red lines and lying close to 

that of GONG SSEM at age 4.6 Gyr. This close match suggests a good 

degree of convergence in the physics and computational methods used in 

the SSEMs considered. 

A graph of corresponding photon diffusion times for the 15 SSEMs 
is shown in Figure 6. The placement order of each graph in the left 
side of Figure 6 from top to bottom is just the reverse of that shown 
in Figure 5. This is evident since photons are increasingly slowed 
down in the core as evolution progresses and hence the diffusion 
times also increase until a radius fraction depth of about 0.43 is 
reached. Beyond this point there is again a reversal of the order as 
shown in Figure 5 due to the combination of two factors. The 
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continuous increase of ℓ𝑚𝑓𝑝 right up to TZ and beyond (see Figure 
5) again results in decreasing diffusion times in each  

 

                           

Fig. 6. Here the photon diffusion time in years is plotted for all the SSEMs from age zero to 
the present. The effective diffusion time is the value computed up to the tachocline zone (TZ) 
in each model marked by dots at a radius fraction ~0.71. The diffusion time increases in the 
core region up to a depth of 0.43 as the model age increases  and thereafter decreases 
gradually. The convective zone lies beyond TZ.  

SSEM. To this must be added the extra increase in ℓ𝑚𝑓𝑝 and hence 
an added shortening of diffusion times as evolution progressed. 
The net result is that the overall photon diffusion timescale needed 
to reach TZ decreases gradually from its peak value of over 204500 
years in the SSEM at zero age to about 187000 years in SSEM at age 
4.6 Gyr. The corresponding value of 188300 for SSEM No. 741 at 
age 4.55 Gyr is also seen to be in good agreement from the listed 
values in the fifth column of Table 2. Finally both the maximum of 
ℓ𝑚𝑓𝑝 at TZ (column 4) and the average mean free path,  𝓵𝒎𝒇𝒑  
(column 6) in Table 2 correlate well with the luminosity ratio of 
each SSEM in the last column. The photon diffusion time in CZ 
appears to add a delay of another 70000 to 100000 years but it is 
neglected here as the convective transfer of energy is far more 
efficient in transporting luminosity to the photosphere in a matter 
of a few days as will be shown next. Thus the characteristic 
timescale for luminosity transport in the sun is the photon diffusion 
time in RZ. 
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4. The Convective Energy Transfer Time Scale 

The solar convection zone (CZ) has a width of about 29% of the 
solar radius above the TZ and extends right up to the photosphere. 
In order to determine the time scale for convective energy transfer 
the average speed of convective mass flow needs to be known. 
According to the Schwarzschild criterion convection will occur 
when the radiative temperature gradient ∇𝑟𝑎𝑑 =  𝑑𝑙𝑛𝑇/𝑑𝑙𝑛𝑃 𝑟𝑎𝑑  
exceeds the adiabatic gradient ∇𝑎𝑑 ≡   𝑑𝑙𝑛𝑇/𝑑𝑙𝑛𝑃 𝑎𝑑 =  0.4 in any 
grid point layer. If the actual temperature gradient as determined 
from model data is defined as  ∇𝑇=  𝑑𝑙𝑛𝑇/𝑑𝑙𝑛𝑃 𝑇  then the 
condition ∇𝑟𝑎𝑑 >  ∇𝑇   ≥  ∇𝑎𝑑  is satisfied in CZ. It is found that a 
super-adiabatic condition exists in most of CZ (except near the 
surface) wherein the actual temperature gradient  𝑑𝑇/𝑑𝑟 𝑎𝑐𝑡 =
∇𝑇 𝑑𝑙𝑛𝑃/𝑑𝑟   is very slightly larger than the adiabatic temperature 
gradient  𝑑𝑇/𝑑𝑟 𝑎𝑑 = 0.4𝑇 𝑑𝑙𝑛𝑃/𝑑𝑟 𝑎𝑑  [9]. The calculation of 
convective energy transport is currently done using a 60 year old 
model [9] known as the mixing length theory (MLT).  

In the MLT it is assumed that bubbles of gas adiabatically move 
over a radial distance ℓ𝓂 called the mean mixing length and then 
deliver their excess heat to the surrounding cooler gas. Cyclic 
convective motions are able to do this continuously and thus very 
efficiently. The mixing length is generally equated to the local 
pressure scale height 𝐻𝑃 =   𝑑𝑟/𝑑𝑙𝑛𝑃 = 𝑃/𝜌𝑔  which is defined as 
the radial distance over which the pressure changes by an e-folding 
factor.  In stellar modelling work it is usual to take ℓ𝓂 = 𝛼𝐻𝑃 where 
the multiplier parameter is chosen in the range  0.5 ≤ 𝛼 ≤ 3 
(GONG SSEMs have 𝛼 ≈ 2). In terms of the super-adiabaticity 
(∇𝑇 −  ∇𝑎𝑑 ) the average convective velocity, 𝑉𝑐𝑜𝑛  of the convective 
fluid elements is found [8] to be given by,  

                    𝑉𝑐𝑜𝑛 =   𝛼ℓ𝓂 (∇𝑇 −  ∇𝑎𝑑 )/2  ≈  𝑣𝑠 (∇𝑇 −  ∇𝑎𝑑 )     (3.11) 

where 𝛼 =  ℓ𝓂/𝐻𝑃 determines the multiple of the local pressure 
scale height selected and 𝑣𝑠 is the  local speed of sound in CZ which 
is on the order of 10000 𝑚/𝑠. Equation (3.11) then shows that since 

(∇𝑇 −  ∇𝑎𝑑 ) ≈ 10−5, the convective velocity 𝑉𝑐𝑜𝑛 ≈ 32 𝑚/𝑠 only. 
This speed is indeed capable of transporting the solar luminosity 
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through the entire CZ in a matter of less than 75 days and it can be 
characterized as the convective time scale. Various theoretical 
estimates of the convective timescale show a range from 20 days [9] 
to over 70 days [10]. These estimates will now be compared with 
available solar model calculations. 

It was found that stellar model structure data obtainable from 
EZWeb Tool, an on-demand fast stellar evolution model generating 
facility [11] contained a listing of convective velocities in the 
convective zone of a star of selected mass and composition. This 
EZWeb Tool computes stellar models using a program which can 
automatically redistribute grid points depending on the age of the 
model. A set of SSEMs for a solar mass star with 𝑍 = 0.02 were 
obtained. Each structure file lists data for just 199 grid points but 
also provides non-zero convective velocity data computed for 
about 40 grid points in the CZ. The convective velocity data from 
EZWeb structure file No. 00065 for sun aged 4.56 Gyr is shown 
plotted in Figure 7. It may be seen that the flow velocity 𝑉𝑐𝑜𝑛  starts 
from zero at the base of CZ, rises to  ~120 𝑚/𝑠  at  𝑟~0.95 𝑅⨀ and 
then shoots up to large velocities over 2 𝑘𝑚/𝑠 before reaching the 
photosphere where the flow weakens considerably and hence 
radiative equilibrium prevails again. A recent estimate [12] of the 
lower limits to convective flow velocities based on Model S data 
appears to suggest that the above values are reasonable. These are 
based on the observed properties of the internal solar differential 
rotation. After adapting the radial flow velocities to the density 
profile of Model S provides the following [12] empirical equation: 

          𝑉𝑐𝑜𝑛 ≥ ~ 30 𝑚 𝑠−1    
𝜌

0.008 𝑔 𝑐𝑚 −3 
−1/2

  
𝑟

0.95 𝑅⨀
 
−1

                  (3.12) 

In the above expression the value of 𝜌 =  0.008 𝑔 𝑐𝑚−3 is the 
density at the radius 𝑟~0.95 𝑅  in  Model S. Thus in the upper CZ at 
this radius this equation sets the minimum flow velocity to be 
~30 𝑚/𝑠. In the deeper level in CZ at  𝑟~0.75 𝑅  where 𝜌 =

 0.14 𝑔 𝑐𝑚−3 the minimum flow velocity  is found to be  ~9 𝑚/𝑠.  
Since these values are the lower limits, larger flow velocities as 
shown in Figure 7 are considered probable. Hence the EZWeb 
SSEM data are used in estimates done in this section. 
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Since the distance between the grid points is known from the 
model data the time needed to cross this grid width at an average 
flow speed can be computed. This is done for all the grid points in 
CZ and the time in days to cross each grid interval is plotted in 
Figure 8.  This shows that more time is needed for convective flows 
to cross the first few grid points after starting from the base of CZ. 
The total time 𝒕𝒄𝒐𝒏 required to reach the photosphere from the base 
of CZ is ~40 days in this case.  A similar exercise done with selected 

    

 

 

 

 

 

 

 

 

Fig. 7. The convective flow velocity 𝑽𝒄𝒐𝒏 in the convective zone of the sun aged 4.56 Gyr . 

 

 

 

 

 

            

 

 

 

 

Fig. 8. Plotted is the mean flow velocity in each grid width of about 5000 km showing that a total time 

of about 40 days is needed for the solar luminosity to be transported across the CZ to the photosphere. 
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EZWeb SSEM structure files [11] of the solar model from zero age 
onwards showed similar results. Both  𝒕𝒓𝒂𝒅  and  𝒕𝒄𝒐𝒏 as obtained 
for several EZWeb SSEMs below are listed in Table 3.   

 

 

 

 

 

 

 

 

 

 

  

 

 

 
Both  𝒕𝒓𝒂𝒅  and  𝒕𝒄𝒐𝒏 as obtained for several EZWeb SSEMs below 
are listed in Table 3.  This table shows that the definite decreasing 
trend seen in 𝒕𝒓𝒂𝒅 with model age is in agreement with a similar 
trend seen in Table 2. However  𝒕𝒄𝒐𝒏 (last column) shows no 
apparent correlation with age of the model. But all these values are 
well within the range of theoretical estimates stated earlier and lead 
to an average convective transfer time scale,  𝒕𝒄𝒐𝒏 , of about 45 days 
which can be neglected in comparison with the long  radiative  
transfer time scale shown in the third column of Table 3. 

Table 3. Time scale for radiative and convective    energy  
transport in EZWeb Solar Evolution Models (Z = 0.02) 

        File No.       Age (Gyr)       𝒕𝒓𝒂𝒅(𝒚𝒆𝒂𝒓𝒔)     𝒕𝒄𝒐𝒏(𝒅𝒂𝒚𝒔)  

          00000            zero                196053              52.8 

          00041            0.367              195493               47.8 

          00044            0.635              193905               52.0 

          00047            1.097              194337               40.6 

          00049            1.550              191600               44.8 

          00051            1.980              188819               53.2 

          00054            2.595              187860               42.6 

          00056            2.980              185310               49.1 

          00059            3.542              184398               40.2  

          00063            4.230              179626               56.9 

          00065            4.560              180029               39.5  

          00066            4.720              178914               41.8    
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4. Time Variation of the Rotational Inertia in SSEMs 

4.1 Introduction 

The fact that each GONG SSEM considered provides mass, density 
and radius data over 2400 grid points offers a means of accurately 
calculating the moment of inertia about an axis of rotation (or 
rotational inertia, MOI) of the sun as it evolved and studying its 
time variation. Apart from the value of MOI denoted by I, another 
parameter of interest is the inertia constant, k defined by the 

expression 𝐼 = 𝑘 𝑀𝑅2, where M and R are respectively the mass 
and radius of the sun now (note that 𝑘 = 2/3 is the maximum 
possible value). A literature search showed that [13] obtained a 
value of 𝐼 = 5.96 × 1046𝑘𝑔𝑚2. This implies that 𝑘 = 0.062 for the 
sun. A compendium [14] quotes 𝑘 = 0.059. A text book [15] quotes 
0.06 and [16] estimates a value 0.062. As these values are based on 
earlier solar models of uncertain accuracy a fresh determination 
based on data from SSEMs has been undertaken here. 

A brief account of the expressions used for calculating the MOI will 
now be given. The MOI about an axis of a spherical shell of mass  

4𝜋𝑟2𝜌 𝑟 dr  with radius 𝑟, density 𝜌 𝑟  and thickness 𝑑𝑟 is 

                                      𝑑𝐼 =
2

3
4𝜋𝜌 𝑟 𝑟4dr                                (4.1) 

The discretized form of this equation for the  𝑖𝑡  shell is,   

                        𝑑𝐼 =
8

3
πρiri

4∆ri =
8

3
πρiri

4[ri+1 − ri]                  (4.2) 

The total MOI is now obtained by summing over all shells as, 

           𝐼 =
2

3
 𝑑𝑀 𝑟 𝑟2 =  𝑑𝐼 =

𝑅

0
  

8

3
πρiri

4[ri+1 − ri] 
𝑅(𝑖)
𝑖=0           (4.3) 

This procedure is repeated for all the SSEMs. It was remarked in 
Section 1 that the bulk of the solar radiative zone (RZ) slowly 
rotated almost like a rigid body. Hence the MOI of RZ and the 
inertia constant are also computed for all SSEMS by summing up to 
the shell ending at TZ. 
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4.2. Age Dependence of the Rotational Inertia in SSEMs 

The results of computations are presented in Table 4 which shows 
the model number, its age, radius, central density, MOI and the 
inertia constant for all the SSEMs.  

 
Table 4. Listed are the SSEM Number,  Age, Central density,  total MOI 𝑰⨀ ,  

Inertia Constant 𝒌⨀,  MOI 𝑰𝑻𝒁 of RZ,  and Inertia Constant  𝒌𝑻𝒁 

SSEM   Age       𝜌𝑐                  𝐼⨀               Inertia             𝐼𝑇𝑍             Inertia 

 No.      Gyr       × 103          × 1046        Constant         × 1046      Constant 

                           kg m−3         kg m2       𝑘⨀ =  
𝐼⨀

𝑀⊙𝑅⊙
2       kg m2     𝑘𝑇𝑍 =  

𝐼𝑇𝑍

𝑀𝑇𝑍 𝑅𝑇𝑍
2  

01        0.000       82.3          6.73549         0.09112         5.76554        0.15541  

03        0. 051      82.6          6.76489         0.09104         5.78173        0.15451   

05        0.185       83.7          6.80045         0.09057         5.80954        0.15375 

07        0.386       85.5          6.82174         0.08983         5.82427        0.15275  

09        0.660       88.1          6.83754         0.08880         5.83762        0.15127  

11        1.010       91.7          6.85246         0.08748         5.85260        0.14931  

13        1.442       96.5          6.86941         0.08586         5.87086        0.14685  

15        1.959     103.0          6.89114         0.08389         5.89378        0.14386 

17        2.565     111.6          6.92129         0.08156         5.92867        0.14011 

18        2.903     117.1          6.94117         0.08025         5.94467        0.13822 

20        3.603     130.1          6.99174         0.07752         5.99146        0.13397 

21        3.919     136.9          7.01970         0.07629         6.01686        0.13202 

22        4.213     143.8          7.04934         0.07513         6.04388        0.13016 

23        4.407     148.7          7.07086         0.07438         6.06191        0.12898 

24        4.600     153.9          7.09423         0.07363         6.07863        0.12791 

741      4.550     153.2          7.09959         0.07369         6.07477        0.12785 

 

In Figure 9 the MOI of each shell 𝒅𝑰 𝒓 = 𝟐/𝟑𝒓𝟐𝒅𝑴(𝒓) is plotted 
against its mass fraction at the top and against the radius fraction 
below for all the 16 SSEMs. The dominant contribution to the total 
MOI is seen to arise from shells within about 80% of the model 
radius at which point 99% of the solar mass is already enclosed. It 
may be observed that the MOI per shell in the model No. 741 as 
shown by the dotted line graphs is nearly twice that of all the 
remaining graphs of 15 SSEMs. This is because of the significantly 
smaller number of shells for which data are computed in this 
model. The SSEM No. 741 is described by 1455 shells up to the 
model surface but only about 580 shells cover its RZ up to the TZ at 
the bottom of CZ at which point over 97.5% of solar mass is 
enclosed. For all the SSEMs considered here the corresponding 
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numbers are respectively 2402 and about 1000. The smaller 
numbers of shells in SSEM No. 741 therefore makes most of them 
both thicker and more massive. This results in a much larger MOI 
per shell in that model. But a perusal of the last two rows of Table 4 
shows that there is excellent agreement between the values of MOI 
and 𝑘 for the two SSEMs listed there, namely model No.24 (Model 
S) at age 4.60 Gyr and model No.741 at age 4.55 Gyr respectively. In 
both parts of Figure 9 the effect of evolution on each SSEM can be  

                      

Figure. 9. The MOI of each shell is plotted against its mass fraction above and against the radius 
fraction at the top for all the SSEMs. Notice the leftward shift of the graphs with age. Notice that mass 

distribution in the region 𝟎. 𝟐 < 𝒓/𝑹 < 0.71 or  ~𝟎. 𝟒 < 𝑴𝒓/𝑴 < 0.98 dominates the total MOI. 

seen by the gradual leftward shift of the  corresponding graph from 
zero-age to 4.6 Gyr.  The corresponding SSEM data indicate that 
during this period the central density has increased from about 
82000 kg m−3 to 154000 kg m−3 as shown in the third column of 
Table 4. Thus there is a gradual increase in the core mass 
distribution but a negligible increase in the corresponding MOI. 
Since this is coupled with a slow expansion of the corresponding 
SSEM as shown in the third column in Table 1 there is only a small 
gradual increase in the total MOI of the model from 6.73 × 1046  kg 
m2 at zero age to 7.09 × 1046  kg m2 at 4.6 Gyr but the factor 𝑘 
decreases from 0.0911 to 0.0736 during the same period. 
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The MOI of the nearly rigid RZ and the corresponding inertia 
constant factor have also been calculated taking into account the 
radius and the total mass of this sphere. These quantities have been 
listed in the last two columns of Table 4. It is now seen that MOI of 
RZ increases from  5.76 × 1046  kg m2 at zero age to 6. 08 ×
1046  kg m2 at 4.6 Gyr and the factor 𝑘 decreases from 0.1554 to 
0.1279 during the same period.  

4.3. Discussion of the Internal Changes in MOI 

An investigation of how the mass distribution in different parts of 
the solar radiative interior contributes to the total MOI of the SSEM 
was made by plotting the spherical shell mass 𝒅𝑴 𝒓 =

𝟒𝝅𝒓𝟐𝒅𝒓𝝆(𝒓) and the corresponding MOI 𝒅𝑰 𝒓 = 𝟐/𝟑𝒓𝟐𝒅𝑴(𝒓) after 
normalizing them as shown in Figure 10.  Computations show that  

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 10. Both the normalized mass of each shell 𝒅𝑴 𝒓  and its MOI 𝒅𝑰 𝒓  are plotted. Notice that 
the  bunched curves show a shift of the 0 Gyr curve at right to the 4.6 Gyr curve at left.  

the region contributing over 80% to the total solar MOI can be 
nearly identified as the mass distribution in the range 0.2 < 𝑟/𝑅 <
0.71 or  ~0.4 < 𝑀𝑟/𝑀 < 0.98  in all the SSEMs. Hence the entire  RZ 
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was split into three parts. The first part is the central core region 0 < 
r/R < 0.2, the second part is the outer core region 0.2 < r/R < 0.4 
and the third part is the remaining region 0.4 < r/R < 0.71 which 
ends with TZ at the base of the convective zone. The MOI 
contribution from these three parts denoted as 𝐼(0 < 𝑟/𝑅 < 0.2), 
𝐼(0.2 < 𝑟/𝑅 < 0.4) and 𝐼(0.4 < 𝑟/𝑅 < 0.71) respectively were 
computed separately in all the SSEMs. The sum of these three MOIs 
would of course be equal to that of entire radiative interior given 
by 𝐼𝑇𝑍(0 < 𝑟/𝑅 < 0.71). The mass content of these regions was also 
computed. The results of these computations have been grouped 
together for the entire sun and shown in Table 5. The initial values 

    

Table 5. Region wise fractional Moment of Inertia and  mass content in the SSEMs  

       Region                  Value at 0 Gyr               Parameter             Value at 4.6 Gyr     

                                        609615  𝑘𝑚     ≤       𝑅𝑎𝑑𝑖𝑢𝑠,      𝑅⨀     ≤   695978  𝑘𝑚      

                         6.73549 × 1046  𝑘𝑔𝑚2   ≤          𝑀𝑂𝐼,   𝐼⨀            ≤   7.09423 × 1046𝑘𝑔𝑚2 

Region 1 (central core):         0.037 ∙ 𝐼⨀ ≤   𝐼  0.0 <
𝑟

𝑅
< 0.2    ≤ 0.062 ∙ 𝐼⨀              

        Mass content        :        0.218 ∙ 𝑀⨀ ≤  𝑀  0.0 <
𝑟

𝑅
< 0.2  ≤ 0.342 ∙ 𝑀⨀  

Region 2 (outer core)   :        0.322 ∙ 𝐼⨀ ≤    𝐼  0.2 <
𝑟

𝑅
< 0.4   ≤ 0.349 ∙ 𝐼⨀                

        Mass content        :        0.497 ∙ 𝑀⨀ ≤  𝑀  0.2 <
𝑟

𝑅
< 0.4  ≤ 0.453 ∙ 𝑀⨀  

Region 3 (up to TZ)     :       0.498 ∙ 𝐼⨀ ≤    𝐼  0.4 <
𝑟

𝑅
< 0.71  ≤ 0.447 ∙ 𝐼⨀             

        Mass content        :       0.257 ∙ 𝑀⨀ ≤  𝑀  0.4 <
𝑟

𝑅
< 0.71  ≤ 0.181 ∙ 𝑀⨀ 

Radiative Zone             :       0.857 ∙ 𝐼⨀ ≤  𝐼𝑇𝑍  0.0 <
𝑟

𝑅
< 0.71  ≤ 0.858 ∙ 𝐼⨀          

  (total of all 3 regions) :      0.972 ∙ 𝑀⨀ ≤  𝑀 0.0 <
𝑟

𝑅
< 0.71  ≤ 0.976 ∙ 𝑀⨀   

Convective Zone          :       0.144 ∙ 𝐼⨀ ≤    𝐼  0.71 <
𝑟

𝑅
< 1.0    ≤ 0.143 ∙ 𝐼⨀             

       Mass content         :      0.028 ∙ 𝑀⨀ ≤  𝑀 0.71 <
𝑟

𝑅
< 1.0  ≤ 0.024 ∙ 𝑀⨀    

corresponding to the sun at zero age are shown at the left side of all 
ranges and the current values corresponding to the sun at age 4.6 
Gyr are shown at right. An inspection of entries in Table 5 leads to 
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the following observations. The dominant contributor to the total 
MOI at any age is the mass distribution in the outer core region 
(Region 2) together with mass distribution up to the TZ (Region 3). 
For the sun at zero age it is seen that the total mass content in these 
two regions of 75.4 per cent gives rise to 82 percent of the total MOI 
of the sun as it was then. For the evolved sun at age 4.6 Gyr the 
mass content of regions 2 and 3 drops to 63.4 percent but still it 
contributes as much as 80 percent of total MOI due to expansion of 
the sun by 14 percent. This finding may be contrasted with the 
suggestion by [13] that 80 per cent of solar MOI now is generated 
by the mass distribution between radius fractions 0.20 and 0.65 
only. The 12 per cent mass content that disappeared from these two 
regions during the solar evolution until now appears to have  
moved into in the central core region (Region 1) which now has a 
mass content of 34.2 percent while it was just 21.8 per cent at zero 
age of the sun. 

However, the contribution of the mass content of the central core 
(Region 1) to the total MOI of the sun is quite small. While it was 
just 3.7 per cent at zero age it has now risen to 6.2 percent in spite 
of the mass content being over one third of solar mass now. The 
main reason for the central core MOI being a small fraction of the 
total solar MOI is that the range of radii involved is relatively small 
even though the core radius has now increased to 140000 km from 
about 122000 km at zero age. It is in the central part of this region 
that a severe depletion of hydrogen content (X) and its replacement 
by helium (Y) has occurred. This can be seen in Figure 3 which 
shows the age dependent profiles of X, Y and Z for all the 15 
GONG SSEMs. Some increase in the mass build up of the central 
core has also been due to loss of hydrogen from there by buoyant 
diffusion towards the convective zone and a small gain in terms of 
diffusive settling of helium and metals from the outer radiative 
zone and the convective zone  of the sun. This is suggested by the 
fact that the current levels at the center are X = 0.33727, Y = 0.64246 
and Z = 0.02027 whereas in CZ they are X = 0.73729, Y = 0.24465 
and Z = 0.01806. As a result of these factors the central density in 
the sun has risen by about 90 per cent over its zero age value.                                      

Thus it is seen that the entire RZ in the sun contributes about 85.7% 
of the total solar MOI at zero age and it surprisingly remains 
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almost the same even now in spite of changes in the interior 
regions. The remaining 14.3% of the solar MOI is accounted for by 
the convective zone and it too remains nearly unchanged during 
the long solar evolution. This happens because of the following 
circumstances. At zero age of the sun the CZ had a mass content of 
just 2.8% of the solar mass but it stretched over an expanse of about 
177000 km between radii 433000 km and 609615 km. In all the 
SSEMs this region is described by data for about 1400 grid points 
(shells) having an average thickness of 140 km. At the current age 
of the sun the CZ mass content got reduced to 2.4% but its extent 
increased to over 195000 km between radii 501000 km and 696000 
km due to expansion of the sun. These circumstances have 
combined to keep the MOI of the convective zone at nearly 
constant levels as shown in Table 4. 

Another parameter of interest is the variation of the solar MOI with 
model age from its value at zero age of the sun. This is found (see 
Table 4) to be a modest increase at a rate of about 1.175% per Gyr or 
about 2.47 × 1028  𝑘𝑔 𝑚2𝑠−1. This finding contradicts the 
observation by [13] that the solar MOI decreases at the rate of 
5.5 × 1027  𝑘𝑔 𝑚2𝑠−1. 

The angular momentum of the radiative zone of the sun is also of 
interest since it was pointed out earlier (Section 1) that this region 
rotates like a near rigid body. If the angular velocity is taken to be 
Ω = 2𝜋 × 433 × 10−9 𝑠−1 and the current value of the MOI of solar 
RZ is taken as  𝐼 = 6.08 × 1046  kg m2 then the corresponding 
angular momentum is given by  𝐼Ω =   1.65 × 1041  𝑘𝑔 𝑚2 𝑠−1. 

5. Conclusions 

The work described in Section 2 leads to the following conclusions. 
The extent of solar radiative zone has been determined (Table 1) to 
an accuracy of at least one shell thickness below the base of the 
convection zone in all the SSEMs. It was found that both the 
relevant mass fraction and the radius fraction were essentially 
constant during solar evolution up to the present. It can therefore 
be concluded that the fractional extent of radiative and convective 
zones in a well constructed model of a solar mass star are fixed in 
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the ZAMS stage itself and that the extent of these regions remains 
essentially unchanged during a significant part of its main 
sequence lifetime. This follows from the observation that while the 
spread of the shell burning region in the sun has caused some 
expansion it still remains too far away to affect the tachocline zone. 
More detailed standard solar models are needed to understand 
how the step up of hydrogen as well as step down of helium and 
metals occur at the tachocline zone. 

The work described in Section 3 leads to the following conclusions. 
In the central nuclear burning region of the sun the photon 𝓵𝒎𝒇𝒑  
has the smallest possible value in the entire RZ and so the photons 
diffuse out slowest there. The  ℓ𝒎𝒇𝒑 keeps decreasing with model 
age there as it is sensitive to changing central conditions. Both the 
average photon mean free path and its maximum value at the 
tachocline zone are seen to be important characteristics of an SSEM 
of a given age as they are well correlated with the corresponding 
luminosity.  These two parameters are found to increase from 
0.0576 cm to 0.0822 cm and from 0.1288 cm to 0.2503 cm 
respectively during the solar evolution up to the present. This is 
why the solar photon diffusion timescale has gradually decreased 
from 205000  years at zero age to 187000 years now. The mean 
value of the photon diffusion timescale at 196000 years, however, is 
a characteristic of the size of the solar radiative zone which is set by 
the mass and chemical composition of the sun. 

On the other hand the time scale for convective energy transfer in 
the solar CZ is found to range between 37 and 53 days with an 
average value of about 45 days. Whatever this may be it is so short 
and fast compared with the photon diffusion time scale in the sun. 
Therefore it may be asserted that the photon diffusion time scale of 
a solar mass star is also the characteristic luminosity transport time 
scale.  

The work described in Section 4 leads to the following conclusions. 
A perspective on the evolution of the sun through changes in its 
internal moment of inertia has been obtained. The rotational MOI 
of the sun in its present state of evolution is found on the basis of 
the 2402 grid point data of the Model S to be 7.09 × 1046  kg m2. The 
corresponding inertia constant is 0.0736 indicating that the sun is 
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highly centrally condensed.  This MOI value is nearly 18% larger 
than the available published values (Section 4.1). Thus the value of 
the solar MOI determined from data of Model S is the best value 
available now for the sun.  The average rate of increase of MOI 
during the solar evolution has been about 1.175 % per Gyr or about 
2.47 × 1028  𝑘𝑔 𝑚2𝑠−1.    The MOI of the almost rigid solar RZ itself 
now and the inertia constant are  6. 08 × 1046  kg m2 and 0.1279 
respectively. 
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