$\mathrm{L}(\mathrm{t}, 1)$-Colouring of Cycles

Priyanka Pandey* and Joseph Varghese Kureethara ${ }^{\dagger}$

Abstract

For a given finite set T including zero, an $\mathrm{L}(\mathrm{t}, 1)$-colouring of a graph G is an assignment of non-negative integers to the vertices of G such that the difference between the colours of adjacent vertices must not belong to the set T and the colours of vertices that are at distance two must be distinct. For a graph G , the $\mathrm{L}(\mathrm{t}, 1)$-span of G is the minimum of the highest colour used to colour the vertices of a graph out of all the possible $\mathrm{L}(\mathrm{t}, 1)$-colourings. We study the $L(t, 1)$-span of cycles with respect to specific sets.

Keywords: L(t, 1)-colouring, Communication networks, Channel assignment, Radio frequency, Colour span, Cycles.

Mathematics Subject Classification (2010): 05C38, 05C78

1. Introduction

The concept of graph colouring finds its use in the optimal assignment of radio frequencies to radio stations in a specific region. The first kind of channel assignment problem was brought into picture by Metzger[4]. The T-colouring problem introduced by Hale[3] is one of the first types of graph colouring used in radio channel assignment. In this colouring, the vertices must be assigned colours in such a way that the difference of colours of any two neighbouring vertices should not belong to the given set T. Later, Roberts[8] in his private communication with Griggs proposed that the disturbance in transmission of signals is not only due to neighbouring transmitters but also due to the transmitters at distance 2 . This led to the study of $L(2$, 1)-colouring. Labelling vertices of graphs at distance 2 was studied extensively by Griggs and Yeh[10].

[^0]We introduced another type of colouring called $\mathrm{L}(\mathrm{t}, 1)$-colouring which finds its foundation in T-colouring and $\mathrm{L}(2,1)$-colouring[6] and studied the $\mathrm{L}(\mathrm{t}, 1)$-colouring of Wheel Graphs in [7]. One of the major difficulties when it comes to colour any graph when the set T comes in picture is the random gaps in the set T. The randomness of the set T makes it tough to work on bound related problems for graph of larger size.

In this work we study the bounds for $\mathrm{L}(\mathrm{t}, 1)$-span of cycles [5]. All standard definitions and notations related to graphs are according to [9].

2. L(t, 1)-span of Paths and Cycles

$\mathrm{L}(\mathrm{t}, 1)$-colouring is defined as follows.
Definition 2.1. Let $G=(V, E)$ be a graph and let $d(u, v)$ be the distance between the vertices u and v of G. Let T be a finite set of non-negative integers containing 0 . An $L(t, 1)$-colouring of a graph G is an assignment c of non-negative integers to the vertices of G such that $|c(u)-c(v)| \notin T$ if $d(u, v)=1$ and $c(u) \neq c(v)$ if $d(u, v)=2[6]$.
Definition 2.2. [6] For a graph G with a given set T and all the $L(t$, 1)-colourings c of $G, L(t, 1)$-span of G denoted by the symbol $\lambda_{t, 1}(G)$ is
$\lambda_{t, 1}(G)=\min \left\{\max _{u, v \in V(G)}\{|c(u)-c(v)|\}\right\}$
Next, we find the bounds of $L(t, 1)$-span of cycles for some specific sets T.

The following lemma is very trivial.
Lemma 2.3. A minimum of three colours are required to colour any connected graph G with $n \geq 3$ in $L(t, 1)$-colouring.
Theorem 2.4. For a finite set T of even numbers containing 0 and 2 the $L(t, 1)$-span of the cycles of length $n \geq 3$ is given by
$\lambda_{t, 1}\left(C_{n}\right)= \begin{cases}3 & \text { if } n \equiv 0(\bmod 4) \\ c_{\sigma} & \text { if } n \equiv 1(\bmod 4) \\ 5 & \text { if } n \equiv 2(\bmod 4) \\ c_{\sigma} & \text { if } n \equiv 3(\bmod 4)\end{cases}$
where $c_{\sigma}=$ least even integer not occurring in set T.
Furthermore, if $2 \notin T$ then,

Proof. We prove the theorem in two parts. In the first part, let us assume that T contains 0 and 2 . Let the vertices of the cycle be labelled as $v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}, v_{1}$. Let f be the colouring function defined from $V(G) \rightarrow \mathbb{N} \cup\{0\}$.

Case 1: $n \equiv 0(\bmod 4)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 4) \\ 1 & \text { if } i \equiv 2(\bmod 4) \\ 2 & \text { if } i \equiv 3(\bmod 4) \\ 3 & \text { if } i \equiv 0(\bmod 4)\end{cases}$
By this colouring, the vertices that are adjacent will have the colour difference 1 or 3 which is not a part of set T and the vertices which are at distance 2 will get distinct colours. Figure 1 shows the colouring for such a graph.

Figure 1: L(t, 1)-colouring of cycle C_{n} for $n \equiv 0(\bmod 4)$

$$
\text { Case 2: } n \equiv 1(\bmod 4)
$$

The colouring given below gives the least possible L(t, 1)-colouring for all vertices of the cycle for $1 \leq i \leq n-1$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 4) \\ 1 & \text { if } i \equiv 2(\bmod 4) \\ 2 & \text { if } i \equiv 3(\bmod 4) \\ 3 & \text { if } i \equiv 0(\bmod 4)\end{cases}$
and
$f\left(v_{n}\right)=c_{\sigma}$
where c_{σ} is the least even integer not occurring in the set T. Here, we see that $\left|f\left(v_{i}\right)-f\left(v_{i+1}\right)\right|=1$ for $1 \leq i \leq n-2$. Therefore, none of the adjacent vertices $\left\{v_{i}, v_{i+1}\right\}$ for $1 \leq i \leq n-2$ would have colour difference an even number.

Figure 2: $\mathrm{L}(\mathrm{t}, 1)$-colouring of cycle C_{n} for $n \equiv 2(\bmod 4)$

Moreover, $\left|f\left(v_{n-1}\right)-f\left(v_{1}\right)\right|=\left|c_{\sigma}-3\right|$, which is an odd number and $\left|f\left(v_{n}\right)-f\left(v_{1}\right)\right|=\left|c_{\sigma}-0\right|=c_{\sigma}$. Hence for adjacent vertices f gives a colouring such that colour difference does not belong to T .

For vertices at distance 2, $\left|f\left(v_{i}\right)-f\left(v_{i+2}\right)\right|=2$ for $1 \leq i \leq n-3$, $\left|f\left(v_{n-2}\right)-f\left(v_{n}\right)\right|=\left|2-c_{\sigma}\right|$ which is at least 2. Also, $\left|f\left(v_{n-1}\right)-f\left(v_{1}\right)\right|=$ $|3-0| \geq 1$ and $\left|f\left(v_{n}\right)-f\left(v_{2}\right)\right|=\left|c_{\sigma}-1\right| \geq 3 \geq 1$.

Case 3: $n \equiv 2(\bmod 4)$
The colouring given below gives the least possible L(t, 1)-colouring for all vertices of the cycle for $1 \leq i \leq n-2$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 4) \\ 1 & \text { if } i \equiv 2(\bmod 4) \\ 2 & \text { if } i \equiv 3(\bmod 4) \\ 3 & \text { if } i \equiv 0(\bmod 4)\end{cases}$
and
$f\left(v_{i}\right)= \begin{cases}4 & \text { if } i=n-1 \\ 5 & \text { if } i=n\end{cases}$

We can give the same argument as in case 1 for vertices $v_{i}, 1 \leq i \leq$ $n-2$. From the Figure 2, $f\left(v_{n-3}\right)=2, f\left(v_{n-2}\right)=3, f\left(v_{n-1}\right)=4, f\left(v_{n}\right)=$ $5, f\left(v_{1}\right)=0, f\left(v_{2}\right)=1$. Hence the above colouring f justifies the condition for $\mathrm{L}(\mathrm{t}, 1)$-colouring.

Case 4: $n \equiv 3(\bmod 4)$
The colouring given below gives the least possible L(t, 1)-colouring for all vertices of the cycle for $1 \leq i \leq n-1$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 4) \\ 1 & \text { if } i \equiv 2(\bmod 4) \\ 2 & \text { if } i \equiv 3(\bmod 4) \\ 3 & \text { if } i \equiv 0(\bmod 4)\end{cases}$
and
$f\left(v_{n}\right)=c_{\sigma}$
In this colouring adjacent vertices have colour difference an odd number and non-adjacent vertices have distinct colours. This concludes the proof of the first part.

In the second part of the proof, let us consider the situation that $2 \notin T$. The proof is obtained by considering three cases.

Case 1: $n \equiv 0(\bmod 3)$
Let the colouring be given as follows
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
As $2 \notin T$, the above colouring implies that the colour difference of adjacent vertices and vertices at distance 2 are either 1 or 2 . Hence it is an optimal $\mathrm{L}(\mathrm{t}, 1)$-colouring since we are using the colours 0,1 and 2.

$$
\text { Case } 2: n \equiv 1(\bmod 3)
$$

For $1 \leq i \leq n-1$, the colouring is given below.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
and
$f\left(v_{n}\right)=3$
The vertices which are adjacent will have the colour difference 1 or 3 which are not a part of set T and the vertices which are at distance 2 will get distinct colours. For v_{n} neither 0 nor 2 would fit in as they are the colours of the adjacent vertices. For the two vertices which are at the distance 2 from $v_{n} f$ assigns the colour 1 . Hence v_{n} is forced to have the colour 3 , which is the least number satisfying the condition for $\mathrm{L}(\mathrm{t}, 1)$-colouring. Hence f gives the least possible $\mathrm{L}(\mathrm{t}$, 1)-colouring.

$$
\text { Case 3: } n \equiv 2(\bmod 3)
$$

The colouring given below gives the least possible L(t, 1)-colouring for all vertices of the cycle for $1 \leq i \leq n-2$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$

Here, $(n-1)^{\text {th }}$ and $n^{\text {th }}$ vertices can be coloured depending on the presence of element 4 in the set T .
If $4 \in T$ then,
$f\left(v_{i}\right)= \begin{cases}3 & \text { if } i=n-1 \\ 5 & \text { if } i=n\end{cases}$
Since, $\left|f\left(v_{i}\right)-f\left(v_{i+1}\right)\right| \in\{1,2,5\} \notin T$ for $1 \leq i \leq n-1, f\left(v_{i}\right) \neq f\left(v_{i+2}\right)$ for $1 \leq i \leq n-2, f\left(v_{n-1}\right) \neq f\left(v_{1}\right)$ and $f\left(v_{n}\right) \neq f\left(v_{2}\right)$. Thus we get a least possible L(t, 1)-colouring.
If $4 \notin T$ then,
$f\left(v_{i}\right)= \begin{cases}3 & \text { if } i=n-1 \\ 4 & \text { if } i=n\end{cases}$
Here, the vertices which are adjacent will have the colour difference 1 or 4 which are not part of the set T and the vertices which are at distance 2 will get distinct colours. Hence, the conditions for $\mathrm{L}(\mathrm{t}$, 1)-colouring are satisfied.

Remark 2.5. When $2 \notin T$, span is always less than 5 i.e., the value of $\lambda_{t, 1}\left(C_{n}\right)$ does not depend on the highest value of the set T.
Corollary 2.6. For a finite set T containing 0 and all consecutive even integers from 2 such that $\max \{T\}=r$, the $L(t, 1)$-span of the cycles is given by:
$\lambda_{t, 1}\left(C_{n}\right)= \begin{cases}3 & \text { if } n \equiv 0(\bmod 4) \\ r+2 & \text { if } n \equiv 1(\bmod 4) \\ 5 & \text { if } n \equiv 2(\bmod 4) \\ r+2 & \text { if } n \equiv 3(\bmod 4)\end{cases}$
We consider the case of 0 and odd integers alone.
Theorem 2.7. For a finite set T of odd numbers containing O and 1, the $L(t, 1)$-span of the cycles for length $n \geq 3$ is given by:

If $1 \notin T$, then
$\lambda_{t, 1}\left(C_{n}\right)=\left\{\begin{array}{ll}2 & \text { if } n \equiv 0(\bmod 3) \\ a & \text { if } n \equiv 1(\bmod 3) \\ 4 & \text { if } n \equiv 2(\bmod 3)\end{array} \begin{cases}a=4 & \text { if } 3 \in T \\ a=3 & \text { if } 3 \notin T\end{cases}\right.$

Figure 3: L(t, 1)-colouring of cycle C_{n} for $n \equiv 0(\bmod 4)$

Proof. Let the vertices of the cycle be labelled as $v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}, v_{1}$. Let us assume that T contains 0 and 1 . Let f be a function defined from $V(G) \rightarrow \mathbb{N} \cup\{0\}$.

$$
\text { Case 1: } n \equiv 0(\bmod 3)
$$

The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 2 & \text { if } i \equiv 2(\bmod 3) \\ 4 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
Figure 3 shows the colouring for such graph.
Case $2: n \equiv 1(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n-1$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 2 & \text { if } i \equiv 2(\bmod 3) \\ 4 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
and
$f\left(v_{n}\right)=6$
The vertices which are adjacent will get the colours in such a way that the difference between the colours will be an even number which does not belong to set T and the vertices which are at distance 2 will get distinct colours. Any number less than 6 will violate the condition for $\mathrm{L}(\mathrm{t}, 1)$-colouring, so this is the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring.

Case 3: $n \equiv 2(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n-2$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 2 & \text { if } i \equiv 2(\bmod 3) \\ 4 & \text { if } i \equiv 0(\bmod 3)\end{cases}$

Figure 4: L(t, 1)-colouring of cycle C_{n} for $n \equiv 0(\bmod 4)$

Here, $(n-1)^{\text {th }}$ and $n^{\text {th }}$ vertices can be coloured depending on the presence of element 3 in set T.
If $3 \in T$ then
$f\left(v_{i}\right)= \begin{cases}6 & \text { if } i=n-1 \\ 8 & \text { if } i=n\end{cases}$
The vertices which are adjacent will get the colours in such a way that the difference between the colours will be an even number $\in\{2,8\}$ which does not belong to set T and the vertices which are at distance 2 will get distinct colours.

If $3 \notin T$ then
$f\left(v_{i}\right)= \begin{cases}1 & \text { if } i=n-1 \\ 3 & \text { if } i=n\end{cases}$
In this case, the vertices which are adjacent will get the colours in such a way that the difference between the colours will be an even number $\in\{2,3\}$ which does not belong to set T and the vertices which are at distance 2 will get distinct colours.

Now let us consider the situation that $1 \notin T$. The proof for this is obtained by considering three cases.

Case $1: n \equiv 0(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
Figure 4 gives an $\mathrm{L}(\mathrm{t}, 1)$-colouring for such graph.
Case 2: $n \equiv 1(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n-1$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$

Here, $n^{\text {th }}$ vertex can be coloured depending on the presence of element 3 in set T.
If $3 \in T$ then
$f\left(v_{n}\right)=4$

The vertices which are adjacent will get the colours in such a way that the difference between the colours will belong to set $\{1,4\}$ which does not belong to set T and the vertices which are at distance 2 will get distinct colours.

If $3 \notin T$ then
$f\left(v_{n}\right)=3$
Similarly, here the vertices which are adjacent will get the colours in such a way that the difference between the colours will belong to set $\{1,3\}$ which does not belong to set T and the vertices which are at distance 2 will get distinct colours.

Case 3: $n \equiv 2(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n-2$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
and
$f\left(v_{i}\right)= \begin{cases}3 & \text { if } i=n-1 \\ 4 & \text { if } i=n\end{cases}$
It is easy to check that the vertices which are adjacent will get the colours in such a way that the difference between the colours will be an even number $\in\{1,4\}$ which does not belong to set T and the vertices which are at distance 2 will get distinct colours.

Remark 2.8. Here, $\lambda_{t, 1}\left(C_{n}\right)$ does not depend on the highest value r of set T.

Theorem 2.9. For a finite set T containing 0 and multiples of m where $m \geq 3$,the $L(t, 1)$-span of the cycles

$$
\lambda_{t, 1}\left(C_{n}\right) \leq 4 .
$$

Proof. Consider a finite set $T=\{0, m, 2 m, 3 m, \ldots, r\}$, where r is the $\max \{T\}$.

For $\mathrm{m}=1, \mathrm{~L}(\mathrm{t}, 1)$-colouring becomes $\mathrm{L}(\mathrm{p}, \mathrm{q})$-colouring, where $\mathrm{p}=\mathrm{r}+1$, and $\mathrm{q}=1$. The bound for which was studied by J. P. Georges and D. W. Mauro in [2].

For $\mathrm{m}=2$, bound is given in Corollary 1. For $\mathrm{m}=3$, we will show that the bound is 4 for following three cases.

Let the vertices of cycle be labelled as $v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}, v_{1}$. Let us assume that T contains elements $\{0,3,6, \ldots, r\}$. Let f be a function defined from $V(G) \rightarrow \mathbb{N} \cup\{0\}$.
Case 1: $n \equiv 0(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
The vertices which are adjacent will get the colour with colour difference 1 or 2 which are not an element of the set T and the vertices which are at distance 2 will get distinct colours. Since $0,1,2$ are the least possible colours therefore it gives an optimal $\mathrm{L}(\mathrm{t}, 1)$-colouring.

Case 2: $n \equiv 1(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n-1$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
and
$f\left(v_{n}\right)=4$.
The vertices which are adjacent will get the colour with colour difference 1,2 or 4 which are not an element of the set T and the vertices which are at distance 2 will get distinct colours. Thus it gives an optimal $\mathrm{L}(\mathrm{t}, 1)$-colouring in this case.
Case 3: $n \equiv 2(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n-2$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
and
$f\left(v_{i}\right)= \begin{cases}3 & \text { if } i=n-1 \\ 4 & \text { if } i=n\end{cases}$
The vertices which are adjacent will get the colour with colour difference 1 or 4 which are not an element of the set T and the vertices which are at distance 2 will get distinct colours. Thus it gives an optimal $\mathrm{L}(\mathrm{t}, 1)$-colouring in this case. Therefore, for $\mathrm{m}=3, \lambda_{t, 1}\left(C_{n}\right) \leq 4$.

For $\mathrm{m}=4$; we will show that the bound is 4 for following three cases.

Case 1: $n \equiv 0(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
The vertices which are adjacent will get the colour with colour difference 1 or 2 which are not an element of the set T and the vertices which are at distance 2 will get distinct colours. Thus it gives an optimal L(t, 1)-colouring in this case.

Case 2: $n \equiv 1(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
and
$f\left(v_{n}\right)=3$
The vertices which are adjacent will get the colour with colour difference 1,2 or 3 which are not an element of the set T and the vertices which are at distance 2 will get distinct colours. Thus it gives an optimal $\mathrm{L}(\mathrm{t}, 1)$-colouring in this case.

Case 3: $n \equiv 2(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
$f\left(v_{i}\right)= \begin{cases}3 & \text { if } i=n-1 \\ 4 & \text { if } i=n\end{cases}$
The vertices which are adjacent will get the colour with colour difference 1 or 4 which are not an element of the set T and the vertices which are at distance 2 will get distinct colours. Thus it gives an optimal $\mathrm{L}(\mathrm{t}, 1)$-colouring in this case. Therefore, for $\mathrm{m}=4, \lambda_{t, 1}\left(C_{n}\right) \leq 4$.

For $m \geq 5$, We can colour any cycle using the following sequence: Case 1: $n \equiv 0(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
The vertices which are adjacent will get the colour with colour difference 1 or 2 which are not an element of the set T and the vertices which are at distance 2 will get distinct colours. Thus it gives an optimal $\mathrm{L}(\mathrm{t}, 1)$-colouring in this case.
Case 2: $n \equiv 1(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
and
$f\left(v_{n}\right)=3$
The vertices which are adjacent will get the colour with colour difference 1, 2 or 3 which are not an element of the set T and the vertices which are at distance 2 will get distinct colours. Thus it gives an optimal $L(t, 1)$-colouring in this case.
Case 3: $n \equiv 2(\bmod 3)$
The following colouring gives the least possible $\mathrm{L}(\mathrm{t}, 1)$-colouring for all vertices of cycle for $1 \leq i \leq n-2$.
$f\left(v_{i}\right)= \begin{cases}0 & \text { if } i \equiv 1(\bmod 3) \\ 1 & \text { if } i \equiv 2(\bmod 3) \\ 2 & \text { if } i \equiv 0(\bmod 3)\end{cases}$
and
$f\left(v_{i}\right)= \begin{cases}4 & \text { if } i=n-1 \\ 3 & \text { if } i=n\end{cases}$
The vertices which are adjacent will get the colour with colour difference 1, 2 or 3 which are not an element of the set T and the vertices which are at distance 2 will get distinct colours. Thus it gives an optimal $\mathrm{L}(\mathrm{t}, 1)$-colouring in this case. Therefore, $\lambda_{t, 1}\left(C_{n}\right) \leq 4$. Hence the result.

Remark 2.10. $\lambda_{t, 1}\left(C_{n}\right)$ does not depend on the highest value r of set T when the gap between the terms of T starts increasing.

3. Conclusion

In this paper, we found the bounds for $\mathrm{L}(\mathrm{t}, 1)$-span of cycles for some specific set T. The work done in this paper can be extended to various other classes of graphs, for various set T.

References

[1] G. Chartrand and P. Zhang, Chromatic Graph Theory, CRC Press, 2009.
[2] J. Georges and D. Mauro, "Generalized vertex labelings with a condition at distance two," Congr. Numer. vol. 109, pp. 141-159, 1995.
[3] W. K. Hale, "Frequency assignment: Theory and applications," Proc. IEEE, vol. 68, pp. 1497-1514, 1980.
[4] B. H. Metzger, "Spectrum Management Technique", presented at 38th National ORSA meeting, Detroit, MI, 1970.
[5] P. Pandey and J. V. Kureethara, "L(t, 1)-colouring of cycles," Proc. ICCTCEEC, vol. 1, pp. 185-190, Sep. 2017.
[6] P. Pandey and J. V. Kureethara, "L(t, 1)-colouring of graphs," unpublished.
[7] P. Pandey and J. V. Kureethara, "L(t, 1)-colouring of wheel graphs," Int. J. Scientific Res. Math. Stat. Sci. vol. 4, no. 6, pp. 23-25, 2017.
[8] F. S. Roberts, "T-colourings of graphs: recent results and open problems," Discrete Math., vol. 93, pp. 229-245, 1991.
[9] D. B. West, Introduction to Graph Theory, Prentice Hall, University of Michigan 2001.
[10] R. K. Yeh, "Labelling graphs with a condition at distance two," Ph.D. Thesis, University of South Carolina, 1990.
Editors's Note: This paper is originally presented in the International Conference on Current Trends in Computer, Electrical, Electronics and Communications (ICCTCEEC)-2017.

[^0]: *CHRIST (Deemed to be University); priyanka.pandey@res.christuniversity.in
 ${ }^{\dagger}$ CHRIST (Deemed to be University); frjoseph@christuniversity.in

