ASSOCIATE RING GRAPHS

M. James Subhakar*

ABSTRACT

R is a commutative ring with unity. The associate ring graph AG(R) is the graph with the vertex set \(V = R - \{0\} \) and edge set \(E = \{ (a, b) \mid a, b \text{ are associates and } a \neq b \} \). Since the relation of being associate is an equivalence relation, this graph is an undirected graph and also each component is complete. In this paper, I present some of the interesting results majority of which are for the ring of integers modulo \(n \), \(n \) is a positive integer.

1) \(AG(R) \) is an empty graph if \(R \) is a Boolean ring.
2) \(AG(\mathbb{Z}_n) \) is complete if and only if \(n \) is prime.
3) If \(n \) is even then \(AG(\mathbb{Z}_n) \) has an isolated vertex \(n/2 \).
4) If \(p \) is prime and \(p \neq 2 \), then \(AG(\mathbb{Z}_p) = K_1 \cup K_{p-1} \cup K_{p^2-1} \).
5) \(AG(\mathbb{Z}_{p^2}) = K_{p^2-1} \cup K_{p(p-1)} \).
6) \(AG(\mathbb{Z}_{pq}) = K_{p^2-1} \cup K_{q^2-1} \cup K_{pq-p-q+1} \).
7) A C-program to find the components of \(AG(\mathbb{Z}_n) \).

1. Introduction

The motivation for associate ring graphs is from zero-divisor graphs defined by I. Beck in the year 1988. He introduced the idea of these graphs for commutative rings \(R \) with unity \(1 \). He defined \(\Gamma_0(R) \) to be the graph whose vertices are elements of \(R \) and in which two vertices \(x \) and \(y \) are adjacent if and only if \(xy = 0 \). Beck was
mostly concerned with coloring $\Gamma_0(R)$. In his paper [1] he studied the subgraph $\Gamma(R)$ whose set of vertices is $Z(R)^* = Z(R) - \{0\}$ where $Z(R)$ is the set of zero-divisors of R. $\Gamma(R)$ is non empty unless R is an integral domain and, by a result of G. Ganesan, $Z(R)$ and hence (R) is finite if and only if R is finite. It is shown that $\Gamma(R)$ is connected with $\text{diam}(\Gamma(R)) \leq 3$. Lot of results were subsequently developed (Some of them can be seen in [2] and [3]) by several authors for zero-divisor graphs. If R is a field then (R) is empty or (R) has no edges when all non-zero elements are used as vertices. Since a field is very rich with respect to algebraic structure, it is quite reasonable to associate a graph which is also rich graph theoretically. We know that complete graphs take this place. So I thought of defining a graph from a ring R so that it is complete when R is a field. This graph is nothing but the so called ASSOCIATE RING GRAPH.

2. Preliminaries

All the fundamental concepts of ALGEBRA are from [4] and of GRAPH THEORY are from [5].

3. Associate Ring Graphs

3.1 Associate ring graph: Let R be a ring with unity 1 (not necessarily commutative). The associate ring graph of R denoted by $AG(R)$ is the graph (V,E) where the vertex set $V = R - \{0\}$ and the edge set $E = \{(a,b) / a \text{ is an associate of } b \text{ and } a \neq b\}$.

Note: Throughout this paper a ring always means a ring with unity 1.

3.2 Orbit of an element of a ring: If a is an element of a ring R then the orbit of a denoted by $Or(a)$ is defined as $Or(a) = \{a.u \mid u \text{ is a unit in } R\}$.

3.3 Theorem: The orbits of elements of a ring are either identical or disjoint.
Proof: Let R be a ring and a, b are two elements of R.
If $Or(a)$ and $Or(b)$ are disjoint we have nothing to prove.
Suppose that $Or(a) \cap Or(b) \neq \emptyset$.
Let $c \in Or(a) \cap Or(b)$. Then $c = a.u$ and $c = b.v$ for some units u, v in R.
$\therefore a.u = b.v \Rightarrow a = b.(v.u^{-1})$ and $b = a.(u.v^{-1})$ and so a and b are associates.
Let x be an arbitrary element in $Or(a)$. Then $x = a.s$, s is a unit in R.
So $x = b.(v.u^{-1}).s$
i.e., $x = b.(v.u^{-1}).s$

32
i.e., \(x = b \) (\(a \) unit in \(R \)).

i.e., \(x \in \text{Or}(b) \) and so \(\text{Or}(a) \subseteq \text{Or}(b) \). Similarly we can show that \(\text{Or}(b) \subseteq \text{Or}(a) \).

Thus \(\text{Or}(a) = \text{Or}(b) \).

Hence the Orbits of any two elements of a ring are either disjoint or identical.

3.4 Observation: Since the relation of being associative is an equivalence relation it partitions \(R \) into disjoint sets and it can be easily seen that the equivalence class containing an element \(a \) is nothing but \(\text{Or}(a) \). Thus our graph contains connected components equal in number to the number of disjoint equivalence classes except \(\{0\} \).

3.5 Example 1. Consider the ring \((\mathbb{Z}, +, \cdot) \) of integers. We know that 1 and \(-1\) are the only units of \(\mathbb{Z} \). Therefore for any \(0 \neq a \) in \(\mathbb{Z} \), \(\text{Or}(a) = \{ a, -a \} \). Hence \(\text{AG}(\mathbb{Z}) \) consists of infinite number of components each is a \(K_2 \).

\[
\text{AG}(\mathbb{Z}) = \begin{array}{cccc}
1 & 2 & 3 & 4 \\
-1 & -2 & -3 & -4
\end{array}
\]

Therefore \(\text{AG}(\mathbb{Z}) = K_2 \cup K_2 \cup K_2 \cup K_2 \ldots \).

Example 2. Consider \((\mathbb{Z}_5, +_5, \cdot_5) \). This is a field. Every non zero element is a unit and so any two non-zero elements are associates. Hence the graph is a complete graph with four vertices \(1, 2, 3, 4 \).

The graph \(\text{AG}(\mathbb{Z}_5) \) is

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 0 & 1
\end{array}
\]

Hence \(\text{AG}(\mathbb{Z}_5) = K_4 \).

Example 3. Consider \((\mathbb{Z}_6, +_6, \cdot_6) \). Here \(\mathbb{Z}_6 = \{ 0, 1, 2, 3, 4, 5 \} \).

The Units of \(\mathbb{Z}_6 \) are \(1, 5 \).

\(\text{Or}(1) = \{ 1 \cdot_6 1, 1 \cdot_6 5 \} = \{ 1, 5 \} \).
\begin{align*}
\text{Or}(2) &= \{2, 4\} \\
\text{Or}(3) &= \{3\} \\
\text{Or}(4) &= \{2, 4\} \\
\text{Or}(5) &= \{1, 5\}.
\end{align*}

The graph \(AG(Z_6) \) is

\[
\begin{array}{c}
\text{1} \\
\text{3} \\
\text{5} \\
\text{4}
\end{array}
\]

Hence \(AG(Z_6) = K_1 \cup K_2 \cup K_2 \).

3.6 Theorem: \(AG(R) \) is an empty graph (without edges) if \(R \) is a Boolean ring.

Proof: Let \(R \) be a Boolean ring with unity 1. We show that \(R \) has no units other than the unity 1.

Let \(0 \neq a \) be a unit in \(R \). i.e., \(a.b = 1 \) for some \(0 \neq b \) in \(R \). Since \(R \) is Boolean, \(a^2 = a \).

Now \(a.b = 1 \Rightarrow a.(a.b) = a.1 \Rightarrow a^2.b = a \Rightarrow a.b = a = 1 \Rightarrow a = 1 \).

Hence 1 is the only unit in \(R \). Therefore the orbit of every non-zero element of \(R \) contains only itself.

Hence \(AG(R) \) has no edges.

3.7 Theorem: \(AG(Z_n) = K_{n-1} \) (the complete graph with \(n-1 \) vertices) if and only if \(n \) is prime.

Proof: Suppose that \(AG(Z_n) \) is complete.

i.e., every pair of non-zero elements of \(Z_n \) are connected by an edge.

We know that \(Z_n \) is a commutative ring with unity 1.

If \(a \) is any non-zero element of \(Z_n \) then \(a \) and 1 are joined by an edge. i.e., \(a \) and 1 are associates.
i.e., \(1 = u \cdot a\) for some unit \(u\) in \(Z_n\).

i.e., \(a\) is an invertible element in \(Z_n\).

i.e., every non-zero element in \(Z_n\) is invertible.

Thus \(Z_n\) is a field and hence \(n\) is prime.

Conversely suppose that \(n\) is prime.

Therefore \(Z_n\) is a field.

Let \(x\) and \(y\) be two non-zero elements of \(Z_n\).

Since \(Z_n\) is a field \(x\) and \(y\) are units.

So \(x^{-1} \cdot y\) is also a unit in \(Z_n\).

We have \(x \cdot (x^{-1} \cdot y) = y\).

\(\Rightarrow x\) is an associate of \(y\).

\(\Rightarrow x\) and \(y\) are joined by an edge.

Thus every pair of non-zero elements of \(Z_n\) are joined by an edge.

Hence \(AG(Z_n)\) is complete.

3.8 Theorem: If \(n\) is even then \(AG(Z_n)\) has an isolated vertex namely \(n/2\).

Proof: Suppose \(n\) is even.

i.e., \(n = 2m\) for some \(m\) in \(N = \{ 1, 2, 3, \ldots \}\).

We show that \(m = n/2\) is an isolated vertex in \(AG(Z_n)\).

We know that the units of \(Z_n\) are the non-zero elements of \(Z_n\) which are relatively prime to \(n\). Since \(n\) is even these units must be odd.

Let \(a = 2k+1\) be a unit in \(Z_n\).

Then we have \(m \cdot a = m \cdot (2k+1) = 2mk + m = nk + m = m\) (Since \(nk = 0\) in \(Z_n\)).

Thus the only associate of \(m\) is \(m\) itself.

Since \(AG(Z_n)\) has no self loops \(m\) is an isolated vertex of \(AG(Z_n)\).
3.9 Theorem: If $n = 2p$ where p is a prime ($\neq 2$) then $AG(Z_n) = K_1 \cup K_{p-1} \cup K_{p-1}$.

Proof: Let $n = 2p$. By 3.8, $AG(Z_n)$ has an isolated vertex $n/2 = p$. So $AG(Z_n)$ contains K_1. Also $AG(Z_n)$ has a component $K_{\phi(n)} = K_{\phi(2p)} = K_{\phi(2p)(p)} = K_{p-1}$.

It is enough to prove that the graph has only one component left and that is also K_{p-1}.

We show that the remaining vertices other than p and the units in $K_{\phi(n)} = K_{p-1}$ form the vertices of the other K_{p-1}.

Clearly the number of vertices remaining are $[(n-1)-(p-1)-1] = p-1$.

We have m is a unit if and only if $(m, 2p) = 1$.

If and only if m is odd and not a multiple of p.

If and only if m is odd and $m \neq p$.

If and only if $m = 1, 3, 5, \ldots, (p-2), (p+2), \ldots, (2p-1)$.

Therefore the set of remaining elements is $D = \{2, 4, \ldots, (p-1), (p+1), \ldots, (2p-2)\}$.

We show that the orbit of any general element $2k$ of D is D. The associates of $2k$ are $2k(1), 2k(3), \ldots, 2k(p-2), 2k(p+2), \ldots, 2k(2p-1)$. These products are all even and so are elements of D. We show that that these products are distinct.

Suppose that $2k(2m-1) = 2k(2s-1)$ where $m \neq s$ and $m > s$.

So $2p$ divides $2k(2m-1) - 2k(2s-1) = 4k(m-s)$.

So p divides $2k(m-s)$.

Since p does not divide 2 and k, we must have $p \mid (m-s)$.

Since $(m-s) < p$ we must have $m = s$, a contradiction.

Thus the orbit of $2k$ is D. Therefore every element of D is an associate to every other element of D. This shows that the elements in D form the required K_{p-1}.

Hence $AG(Z_{2p}) = K_1 \cup K_{p-1} \cup K_{p-1}$.

3.10 Theorem: \(\text{AG}(\mathbb{Z}_{p^2}) = K_{p+1} \cup K_{p(p-1)} \).

Proof: Let \(p \) be a prime number.

We have \(\mathbb{Z}_{p^2} = \{0, 1, 2, \ldots, (p^2-1)\} \).

For any \(0 \neq a \) in \(\mathbb{Z}_{p^2} \), \((a, p^2) = 1\) if and only if \(p \) does not divide \(a \).

if and only if \(a \) is not a multiple of \(p \).

Hence \(\text{Or}(1) = \text{units of } \mathbb{Z}_{p^2} = \{1, 2, \ldots, (p-1), (p+1), \ldots, (2p-1), (2p+1), \ldots, (p^2-1)\} \).

The remaining non-zero elements of \(\mathbb{Z}_{p^2} \) are \(p, 2p, 3p, \ldots, (p-1)p \).

Obviously the number of elements in \(\text{Or}(1) = \text{number of units} = (p^2-1) - (p-1) = p(p-1) \).

Thus \(\text{AG}(\mathbb{Z}_{p^2}) \) has \(K_{p(p-1)} \) as a component.

To prove the theorem it is enough to show that the remaining \((p-1)\) non-units (zero-divisors) forms a \(K_{p+1} \).

Let \(D = \{p, 2p, \ldots, (p-1)p\} \).

We have \(\text{Or}(p) = \{p, 1, p, 2, \ldots, p, (p-1), p, (p+1), \ldots\} \).

Clearly the first \((p-1)\) elements of \(\text{Or}(p) \) are elements of \(D \).

So \(D \) is a subset of \(\text{Or}(p) \). \(\text{(1)} \)

Since \(p \) is a non-unit, all elements of \(\text{Or}(p) \) are non-units.

So \(\text{Or}(p) \cap \text{Or}(1) = \emptyset \)

Therefore \(\text{Or}(p) \) is a subset of \(\{\text{Or}(1)\}^c = D \). \(\text{(2)} \)

From \(\text{(1)} \) and \(\text{(2)} \) we get \(\text{Or}(p) = D \).

Thus the elements \(p, 2p, 3p, \ldots, (p-1)p \) of \(\text{Or}(p) \) forms the vertices of the required \(K_{p+1} \).

Hence \(\text{AG}(\mathbb{Z}_{p^2}) = K_{p+1} \cup K_{p(p-1)} \).

3.11 Theorem: \(\text{AG}(\mathbb{Z}_{pq}) = K_{(p-1)} \cup K_{(q-1)} \cup K_{pq \cdot (p-1)} \).

Proof: Without loss of generality we assume that \(p < q \). The cases when \(p = 2 \) and \(p = q \) are already dealt in 3.9 and 3.10 respectively.
Now \(n \) is a unit in \(\mathbb{Z}_{pq} \) if and only if \((n, pq) = 1 \).

If and only if \(n \) is neither a multiple of \(p \) nor a multiple of \(q \).

Also \(n \) is not a unit if and only if \(n \) is either a multiple of \(p \) or a multiple of \(q \).

We have \(\text{Or}(1) = \{1, 2, \ldots, (p-1), (p+1), \ldots, (q-1), \ldots, (pq-1)\} \).

Obviously \(n[\text{Or}(1)] = i(pq) = i(p) j(p) = (p-1)(q-1) = pq - p - q + 1 \).

Thus \(K_{pq, p-q+1} \) is a component of \(AG(\mathbb{Z}_{pq}) \).

Since \(p, q \) are distinct primes they are not associates.

For let \(p = u.q \) where \(u \) is a unit in \(\mathbb{Z}_{pq} \).

i.e., \(p - u.q \) is divisible by \(pq \).

i.e., \(p - u.q = k.pq \) where \(k \) is an integer.

i.e., \(p = q(u + kp) \).

i.e., \(p \) is divisible by \(q \), a contradiction.

Hence \(\text{Or}(p) \cap \text{Or}(q) = \emptyset \).

Here \((p + q) \) is neither a multiple of \(p \) nor a multiple of \(q \).

So \((p + q) \) is a unit in \(\mathbb{Z}_{pq} \) and hence \(p(p + q) \) is an associate of \(p \).

But \(p(p + q) = p^2 + pq = p^2 \) (since \(pq \neq 0 \) in \(\mathbb{Z}_{pq} \)).

Thus \(p^2 \) is an associate of \(p \).

Similarly we can show that \(p^3, p^4, \ldots \) are associates of \(p \).

Thus \(1, p, 2.p, \ldots, p.p, \ldots, (q-1).p \) are distinct elements in \(\text{Or}(p) \).

Therefore \(n[\text{Or}(p)] \geq q-1 \) and similarly \(n[\text{Or}(q)] \geq p-1 \).

We have \(\text{Or}(1) \subseteq \text{Or}(p) \subseteq \text{Or}(q) \) \(\subseteq \mathbb{Z}_{pq} \).

Also \(n[\text{Or}(1) \cap \text{Or}(p) \cap \text{Or}(q)] = n[\text{Or}(1)] + n[\text{Or}(p)] + n[\text{Or}(q)] \) (the union is disjoint)

\[\geq (pq-p-q+1) + (p-1) + (q-1) \]

\[= pq - 1 \]

\[= n[\mathbb{Z}_{pq}] \]
Therefore $n[\text{Or}(1) \cup \text{Or}(p) \cup \text{Or}(q)] \geq n[Z_{pq}]$ \hspace{1cm} (2)

From (1) and (2) we get $\text{Or}(1) \cup \text{Or}(p) \cup \text{Or}(q) = Z_{pq}$.

Now $\text{Or}(p)$ cannot contain more than $(q-1)$ elements otherwise $\text{Or}(q)$ contains less than $(p-1)$ elements which is not true. Thus $n[\text{Or}(p)] = (q-1)$ and so $n[\text{Or}(q)] = (p-1)$.

Hence Z_{pq} has only three distinct orbits namely $\text{Or}(1)$, $\text{Or}(p)$ and $\text{Or}(q)$ with elements $(pq-p-q+1)$, $(q-1)$ and $(p-1)$ respectively.

Hence $AG(Z_{pq}) = K_{(p-1)} \cup K_{(q-1)} \cup K_{pq-p-q+1}$.

3.12 C-program to find the components of $AG(Z_p)$: A C-programming is prepared to find the components of $AG(Z_p)$ for a given positive integer n.

Example:

Enter 'n' value: 50

ORBIT 1: \{ 1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 49 \}.

No. of elements is: 20

ORBIT 2: \{ 2, 4, 6, 8, 12, 14, 16, 18, 22, 24, 26, 28, 32, 34, 36, 38, 42, 44, 46, 48 \}.

No. of elements is: 20

ORBIT 5: \{ 5, 15, 35, 45 \}.

No. of elements is: 4

ORBIT 10: \{ 10, 20, 30, 40 \}.

No. of elements is: 4

ORBIT 25: \{ 25 \}.

39
No. of elements is: 1

FINAL SET is: \{1, 4, 4, 20, 20\} = 49.

Thus \(AG(Z_{50}) = K_1 U K_4 U K_4 U K_{20} U K_{20}\).

References

3. V.K. Bhat and Ravi Raina, Neeraj Nehra, *A Note on Zero Divisor Graph Over*.