
ISSN 0975-3303
Mapana J Sci, 9, 2 (2010), 35-46

ETL AUTO RECONCILIATION

Jibrael Jos* and Brogodishworon U**

ABSTRACT
Extraction, tro.nsformation and Loading (ETL) is the process of storing
data into the data warehouse. Errors in the ETL process con result in
wrong data being stored. This paper introduces on automated approach
to reconcile the source data with data stored in the data warehouse.
This ensures that data in the warehouse is consistent with the source
data and all stakeholders have clarity on the quality of the data. The ETL
Unit presented in the paper can be considered os a template/ design
pattern to implement this strategy. The pattern will help to for
implementing both integrated and independent Auto Reconciliation.
Index Terms-Data Wareryouse, ETL, ETL Unit, Testing, Auto
Reconciliation.

I. Introduction

As the information needs of organizatron grow, Organizations are increasingly
turning towards "Data Warehouse/Business intelligence" applications to satisfy their
demands. The key challenges with these applications are the correctness of data
being stored and the calculations done on the data.

• Christ University, jibroel.jos@christuniversily.in

•• ETL Lead, MindTree Limited, brogdishwaran_u@mindtree.com

35

https://doi.org/10.12725/mjs.17.5

This paper aims to provide a generic approach to consistently address the data
quality issues faced in projects which involve data movement.

A regular, ongoing data movement process ideally needs a minimal maintenance
overhead once the solution is deployed. The ETL code would have been unit tested,
integrated tested and undergone scrutiny of the UAT team. What is sometimes
forgotten that even if a single line of code has not been changed, the daily waves
of data which flow into the warehouse con have an impact on the quality of the
data.

..

ETL Process shifts, cleans and transforms data. Indexes are dropped, partitions
made and other such operations which actually needs a closer check. Given the
size of the process and possible points of failure, an Integrated ETL Auto
Reconciliation Framework is something which cannot be avoided.

II. Related work

Ralph Kimball in his article "38 Sub System of EW' discuss about the need for
different sub system, below is the three which have some relevance to the proposed
work.

Sub System 7: Quality screen handler. In line ETL tests applied systematically to all
data flows checking for data quality issues. One of the feeds to the error event
handler.

Sub System 8: Error Event Handler. Comprehensive system for reporting and
responding to all ETL error events .. Includes branching logic to handle various
classes of errors, and includes real-time monitoring of ETL data quality.

Sub System 27: Workflow monitor. Dashboard and reporting system for all job runs
initiated by the Job Scheduler. Includes number of records processed, summaries
of errors, and actions taken.

In his article " Is the Data Correct?" he has suggested how one can test using some
simple SQL to test whether the underlying data is correct. [3]

Jeff Theobald in his article on "Strategies for Testing Data Warehouse Applications"
talks about using statistical function to check for the validity of data seen on a
report. (4]

36

Ill. Proposed work

An ETL Auto Reconciliation System which will run test cases for each ETL Unit in
tandem with the ETL Process. These unit test cases would be able to be triggered by
a Test Engine to check eitherthe whole system or relevant sub systems independent
of the ETL Process.

These test cases will be run not just during release of the ETL System but will be run
automatically for each and every load.

The test cases will exist for every ETL Unit, it will need to be developed at the time of
Development of ETL System. The test case itself will be developed by o Business
Analyst or a dedicated Tester but to create the SQL I Stored Procedure/Script will
need some involvement of a programmer.

There will be other test cases which check the sanctity of the system on the whole.
(These ore explained in more detail in subsequent sections)

A. ETL Design

• An ETL Design has the following steps

• Files to Staging

• Staging to Dimension

• Staging + Dimension to Fact Tables

• Fact to Aggregated Facts

• Facts to Cross Functional Data Marts

37

ETl design will toke core of logging, status updates, reject handling and reports to
monitor the overall flow of the whole process.

B. Need for Ongoing Testing

ETl coding can get quiet cumbersome and the process which take multiple hours
can have unforeseen error creeping in. The absence or corruption of a file, two
processes getting out of sync and other reason like server disruption. The multi
threading to optimize the data load while making use of the multiple CPU can
make it difficult for the DWH Quality manager to make a quick assessment of the
how the ETl operations have under gone.

Before the Data Warehouse Quality Manager approves the load for the month, he
needs to evaluate which Data Marts hove been synchronized for the latest data
load. For the data marts which have foiled he needs to see the dependencies which
have failed.

Changes in any of the source systems for the data warehouse can have cascading
impact on the warehouse. Take for example a certain table structure gets modified
and loading of the data into staging table foils, which in turn may fail a Fact and
in the process a Data Mart. We cannot possibly release a data mort in which we
say that everything is fine except for say X measure.

There has been many implementation which have hod more than o 1000 individual
packages which run everyday and only one person to manage the ETl movement
(and that too most probably part time).

C. ETL Unit

One Ell unit con be defined os a single data movement from Source A to Destination
B. If ETl process can be considered as a chain of Ell Units, the Figure 2 shows the
two layers which normally are involved in the design (ETL and Metodota layer).

The third Testing layer is what we ore recommending. This Testing Layer will hove
two interfaces with the ETL unit, one to run the test cases and one to check the
results.

Results are checked based on the ETL Dependencies for the ETL unit which we ore
about to run. So for example while running one Fact from Staging to DWH we will
check all the dependent dimensions are okay and even the Staging Table itself is
verified.

38

Once the ETL unit's main task is over then the prbcess will call the test engine to
run the test cases for the unit currently processed.

Like logging level should be configuroble, so should the Testing Layer. Running
con be triggered off at a unit level or at a group level. Some test cases may be
considered as warning and some as critical enough to stop dependent units.

D. Test Engine

The Test Engine is completely Data Driven and every new test case will just need an
entry in the ETL Auto Test Case Table.

Testing Layer is made in a generic manner and all test cases will be some DB SQL
which will run dynamically. Whether it is a Fact, Dimension or Staging, the pattern
would be the same.

This helps us run all the test cases along with ETL and if we choose also independently.
This ETL Design pattern guarantees that there is minimal cohesion between the two
layers and development can work independent of each other.

39

IV. Test Cases

A. General Checks

Inserts: Test Cases which hove been converted to queries such that source and
target tables in a process ore evaluated to ascertain if there has been on error in
moving data.

• Sum of certain amount for certain account in Staging is equal to sum of
amount in Fact

• Row Counts for certain period

Updated columns: Updates needs a more detailed consideration as insert can
be checked by row counts. But updates can be more tricky incase of change in a
dimension key or oHribute. SQL can be written to check cardinality but queries tend
to be slow to run. If audit trail is not available in source system it con prove to be
very cumbersome though not impossible but feasibility will need to be studied for
specific columns on a case to case basis.

Deletions: Incase of hard deletion we will not have any reference data to verify
the deleted record, but incase of soft deletion (flag or archive table) con be handled
with a suitable query.

B. Specific Checks

Each Fact will hove more than 5 test cases, each to evaluate some formulae's,
joins, aggregates.

For a certain keys (account, employee etc}

• Sum of specific measures

• Cardinality of a certain dimension id in a Fact

• Business logic based measures

C. Sanity Checks

• Existence of DB specific statistics

• Existence of Expected Tables

• Existence of Expected Partitions

• Existence of Expected Indexes

• Existence of Expected Materialized/Indexed views

40

• Parameters which effect performance (in case tampered by some over zealous
administrator)

• Partitions wise count (Is a month missing)

• Approximate Checks (Transaction table normally has around 40million rows
coming for the current month, amount in account not above a certain expected
limit) and Statistical Checks [4)

D. Performance Test Case

Apart from existence of partitions, indexes and materialized views some additional
test cases could be related to database query times, like expected runtime for certain
SQL

Pre Processing

Running individual SQL on source system con be time consuming. We may be
able to get all the source system table counts in the extraction window and store in
the Testing Layer

• SQL which does row count of each data object

• Scripts which count rows of every file loaded

• Scripts which get Performance Parameters

• SQL Test Procedures which evaluate if a file is loaded completely or not

V. Testing Metadata

DWH Objects to keep a tab the ETL Engine stores the Lost ETL date for every
Database Object. This helps answering questions like:

• Which all tables were not loaded today?

• Which tables hove been failing in the last week?

To keep o tab of which Fact to run because a DIM has foiled one needs to maintain
the dependencies of all objects. This is tracked in ETL Dependencies. So for example
we would know that

FactBisdependenton

• Fact A

• Staging B

• DIM (9 of them)

41

Fact A itself is dependent on

• STAGING_A

• DIM (12 of them)

And Staging A is dependent on o certain set of

• Al to A9 source files

If source files could not be loaded there is no point trying to run the process which
is loading the Facts. This knowledge of dependencies saves some critical processing
time.

The test cases itself will be stored in ETL Test Case Moster and results in ETL Test
Case Results. The columns will need to include related DWH object, Source test
case SQL and destination test case SQL. In certain cases there may be some expected
difference due to some known data issues; this number may need to be stored to
avoid test case failing doily.

DWH Object Type

Field Name Description Remark Sample

Object_ Type _ld Description of the Primary Key 3
Test Case

Object Type Fact/Index/ FACT
Staging/
Consolidated Fact I
Mat Views

DWH Objects

Field Name Description Remark Sample

10 Unique Identifier Primary Key 12

Object Name FACT SALES

Object Type 10 FK: DWH _Objects 3

Last ETL Date 20-Feb-20 1 0

Row Count Based on time cost 23,432,123

42

Ell Dependencies

Field Name Description Remark Sample

ID Unique Identifier PK 12

Object Nome ld FK -DWH _ OB.JECT"S 25

Dependent Object ld 12,423,312

Ell Test Case Master

Field Name Description Remark Sample

ID Unique Identifier PK 12

Objed_ld Description of the FK-DWH 25
Test Case OBJECTS -

Test Case Name Test Case Name Total Row Count

Source SQl Query to be run Con be SQL, SELECT
to get Expected Procedure nome COUNT(*)
Result to call FROM

STG _BI.LUNG

Destination SQL Query to be run * SELECT
to get Actual Result COUNT(*)

ROM FACT
BILLING WHERE
DT=?

Expected Difference Incase there are 11
differences which
ore known in the
current system
due to certain
anomalies

Severity Whether Test Case
failure should
stop the load

43

ETL Test Case Results

field Nome Description Type Sample

ID Unique Identifier PK 123

Test Case ld FK- Test 6127
Case Moster

Expected Resu It Output of the 12,423,3 12
Query from
Destination

Actual Result Output of the 12,423,300
query from Source

Expected 11
Difference

Status Motch/UnMotch Unmatched
(Detect/
Reviewed I

Approved)

Test DQte I Time 23 Sep 2010

Test Batch ld Incase multiple 538
runs toke place
we will need to
store the batch
for which the
Test Case run.
This will have
special significance
in when a error
run takes place

Approved User ld May need to be
a separate table
which may track
the failure cases

Approved Date

VI. Testing Dashboard

It is assumed that the underlying ETL Solution has already provided process driven
logging, reports on botch outputs, iob failures, reiects on this log table to give the
Data Quality Manager a quick assessment of the ETL load for the day. Additional

44

reports which would be useful the ETL Data Quality Manager could be token from
the proposed testing metadoto.

A. Reports

• Data Marts I Cubes Status

• Critical Alerts

• Failed ETL Units

• Dependent Units Not Processed

• Test Case Results for specific Ell Objects

• Test Case Results for type of ETL Object

• Performance Related Test Case Report

B. Report Implementation

Using a simple set of ASP. NET or Java Script some generic interfaces can be made
to display the test case results.

The independent run test cases given by the Auto Recon will give the much needed
confidence in the data so that the DQM can go ahead and let the bells toll

VII. Future Work

The test cases considered are only those related to running of an ETL, additionally
Test Engine can be extended for development and enhancement testing.

ETLAdmin Dashboard can be integ~ated more completely .,;..ith e~isting ETL system
by creating a Re-Usable Component for the Testing Layer.

VIII. Conclusion

The advantages of this auto reconciliation strategy in data warehousing projects

are

• This is more proactive than reactive in nature. The system does not create
wrong data, which in turn will not lead to wrong reports, which leads to loss of
user confidence in the underlying system.

45

• Business users are aware of the quality/correctness of the report. This is critical
as it prevents disaster scenarios in Data Warehousing proiects (when critical
business decisions are taken on wrong report data).

• This is a step towards Embedded Testing. Generally a change in the source
system introduces data which generates wrong report measures. Conventional
"Development Testing" cannot identify these errors. These errors con only be
identified by embedded testing which are periodically executed.

• This approach once developed into a generic component will reduce the
Development time and increase the quality of the proiect. The development
team does not have to worry about automating test cases.

This process is not the silver bullet for all your maintenance problems, but if there
is one way we need to move, that is towards a better process. And we believe the
ETL Auto Recon Strategy can be one of the key pieces in the Overall ETL Design
Framework.

References

1. Kim boll, R./Joe Caserta "The Data Warehouse ETL Toolkit: Practical Techniques for extracting
cleaning, conforming, and delivering data". John Wiley and Sons 2004. ISBN 81-265-
~~~ . 

2. Kimball, R. "The Data Warehouse Toolkit: Practical Techniques for Building Dimensional 
Data Warehouse extracting cleaning, conforming, and delivering data". John Wiley and 
Sons 1996.1SBN 0-471-15337-0 

3. Kimball, R. "Is Your Data Correct?" http://intelligent-enterprise.informationweek.corri. Dec 
52000 

4. Jeff Theobald. "Strategies for Testing Data Warehouse Applications" http://intelligent
enterprise.informotionweek.com. June 2007. 

46 




