

ISSN 0975-3303
Mapana J Sci, 11, 4(2012), 109-120
https:/ / doi.org/ 10.12725/ mjs.23.9

Skolem Difference Mean Graphs

K Murugan* and A Subramanian ${ }^{\dagger}$

Abstract

Skolem difference mean labelings of some predefined graphs are studied.

Keywords: Skolem difference mean labeling, skolem difference mean graphs.

AMS Subject Classification (2010): 05C78

1. Introduction

Throughout this paper we consider only finite, undirected, simple graphs without loops or multiple edges. Let G be a graph with p vertices and q edges. For all terminologies and notations we follow [2]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and a detailed survey can be found in [4]. The concept of mean labeling was introduced by S. Somasundaram and R. Ponraj in [8] and the concept of skolem mean labeling was introduced by V. Balaji, D.S.T. Ramesh and A. Subramanian in [1]. Motivated by these definitions skolem difference mean labeling was introduced by K. Murugan and A. Subramanian in [7]and further results were proved in $[5,6]$. The following definitions are necessary for the present study. Definitions and concepts which are not specifically mentioned here are in the sense of Harary [2].

[^0]Definition 1.1. A path is a walk if all the points and lines are distinct. A path on n vertices is denoted by P_{n}.

Definition 1.2.A bigraph (or bipartite graph) G is a graph whose point set can be partitioned into two subsets V_{1} and V_{2} such that every line of G joins V_{1} with V_{2}.

Definition 1.3. A star is a complete bigraph $K_{1, n}$
Definition 1.4.If G has order n, the corona of G with H denoted by $G \odot H$ is the graph obtained by taking one copy of G and n copies of H and joining the $i^{\text {th }}$ vertex of G with an edge to every vertex in the $\mathrm{i}^{\text {th }}$ copy of H.

Definition 1.5. A cycle denoted by C_{n}, consisting of n points, is a path with same initial and terminal point.

Definition 1.6. The graph $G^{(t)}$ denotes the one point union of t copies of G.

Definition 1.7. $G_{1} @ G_{2}$ is nothing but one point union of G_{1} and G_{2}. [3]

Definition 1.8. A graph $G=(V, E)$ with p vertices and q edges is said to be a mean graph if it is possible to label the vertices $x \varepsilon V$ with distinct elements from the set $0,1, \ldots \mathrm{q}$ in such a way that the edge $\mathrm{e}=\mathrm{uv}$ is labeled with $\frac{f(u)+f(v)}{2}$ if $\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})$ is even and $\frac{f(u)+f(v)+1}{2}$ if $\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})$ is odd and the resulting edges are distinct.

Definition 1.9. A graph $G(V, E)$ with p vertices and q edges is said to have skolem mean labeling if it is possible to label the vertices $x \varepsilon V$ with distinct elements $f(x)$ from $0,1,2,3 \ldots p$ in such a way that the edge $e=u v$ is labeled with $\frac{f(u)+f(v)}{2}$ if $|f(u)+f(v)|$ is even and $\frac{f(u)+f(v)+1}{2}$ if $|f(u)+f(v)|$ is odd and the resulting labels of the edges are distinct and from $1,2,3 \ldots$. A graph that admits skolem mean labeling is called skolem mean graph.

Definition 1.10. A graph $G(V, E)$ with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices $x \varepsilon V$ with distinct elements $f(x)$ from $1,2,3 \ldots p+q$ in such a way that the edge $e=u v$ is labeled with $\frac{|f(u)-f(v)|}{2}$ if $|f(u)-f(v)|$ is even and $\frac{|f(u)-f(v)|+1}{2}$ if $|f(u)-f(v)|$ is odd and the resulting labels of the edges are distinct and from 1,2,3...q. A graph that admits skolem difference mean labeling is called skolem difference mean graph.

The skolem difference mean labeling of C_{3} is given in figure 1.

Figure 1

2. Main Results

Theorem 2.1 The path P_{n} is skolem difference mean for all values of n.

Proof: Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n} .}\right)=\left\{\mathrm{v}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{P}_{\mathrm{n} .}\right)=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1 ;} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$
Define the function $f: V\left(P_{n}\right) \rightarrow\{1,2,3 \ldots 2 \mathrm{n}-1\}$ as follows.
Case i. When n is odd.

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}\right)=1+2 \mathrm{i}, 0 \leq \mathrm{i}<\frac{n+1}{2} \\
& \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)=2 \mathrm{n}+1-2 \mathrm{i}, 1 \leq \mathrm{i}<\frac{n+1}{2}
\end{aligned}
$$

Case ii. When n is even.

$$
\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}\right)=1+2 \mathrm{i}, 0 \leq \mathrm{i}<\frac{n}{2}
$$

$$
\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)=2 \mathrm{n}+1-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \frac{n}{2}
$$

In both the cases the induced edge labels are 1,2...n-1.
Hence, the theorem.
The skolem difference mean labeling of the paths P_{5} and P_{6} are given below.

Figure 2

Theorem 2.2. If the path P_{n} is skolem difference mean, then the twig G obtained from the path P_{n} by attaching exactly two pendent edges to each internal vertex of the path is skolem difference mean.

Proof: Let the path P_{n} be skolem difference mean.
Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$.
Let $f: V\left(P_{n}\right) \rightarrow\{1,2 \ldots 2 \mathrm{n}-1\}$ be the skolem difference mean labeling of the path.

Let f^{*} be the induced edge labeling of f.
Let G be the twig.
Let $V(G)=\left\{v_{i}, u_{j}, W_{j} ; 1 \leq i \leq n-1,2 \leq j \leq n-1\right\}$ and $E(G)=\left\{v_{i} V_{i+1}, v_{j} u_{j}, v_{j} w_{j}\right.$; $1 \leq i \leq n-1,2 \leq j \leq n-1\}$

Define $g: V(G) \rightarrow f\left(P_{n}\right)$ as follows.
Case i: When n is odd.

$$
\mathrm{g}\left(\mathrm{v}_{2 \mathrm{i}+1}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}\right) ; 0 \leq \mathrm{i}<\frac{n+1}{2}
$$

$$
\begin{aligned}
& \mathrm{g}\left(\mathrm{v}_{2 \mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)+4 \mathrm{n}-8 ; 1 \leq \mathrm{i}<\frac{n+1}{2} \\
& \mathrm{~g}\left(\mathrm{u}_{2 \mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)-4+4 \mathrm{i} ; 1 \leq \mathrm{i}<\frac{n+1}{2} \\
& \mathrm{~g}\left(\mathrm{u}_{2 i+1}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}\right)+4 \mathrm{n}-6-4 \mathrm{i} ; 1 \leq \mathrm{i}<\frac{n-1}{2} \\
& \mathrm{~g}\left(\mathrm{w}_{2 \mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)+2 \mathrm{n}-8+4 \mathrm{i} ; 1 \leq \mathrm{i}<\frac{n+1}{2} \\
& \mathrm{~g}\left(\mathrm{w}_{2 i+1}\right)=\mathrm{f}\left(\mathrm{v}_{2 i+1}\right)+2 \mathrm{n}-2-4 \mathrm{i} ; 1 \leq \mathrm{i}<\frac{n-1}{2}
\end{aligned}
$$

Case ii: When n is even.

$$
\begin{aligned}
& \mathrm{g}\left(\mathrm{v}_{2 \mathrm{i}+1}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}\right) ; 0 \leq \mathrm{i}<\frac{n}{2} \\
& \mathrm{~g}\left(\mathrm{v}_{2 \mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)+4 \mathrm{n}-8 ; 1 \leq \mathrm{i} \leq \frac{n}{2} \\
& \mathrm{~g}\left(\mathrm{u}_{2 \mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)-4+4 \mathrm{i} ; 1 \leq \mathrm{i}<\frac{n}{2} \\
& \mathrm{~g}\left(\mathrm{u}_{2 \mathrm{i}+1}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}\right)+4 \mathrm{n}-6-4 \mathrm{i} ; 1 \leq \mathrm{i}<\frac{n}{2} \\
& \mathrm{~g}\left(\mathrm{w}_{2 \mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)+2 \mathrm{n}-8+4 \mathrm{i} ; 1 \leq \mathrm{i}<\frac{n}{2} \\
& \mathrm{~g}\left(\mathrm{w}_{2 \mathrm{i}+1}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}\right)+2 \mathrm{n}-2-4 \mathrm{i} ; 1 \leq \mathrm{i}<\frac{n}{2}
\end{aligned}
$$

Let g^{*} be the induced edge labeling of g.
Then $g^{*}\left(v_{i} v_{i+1}\right)=f^{*}\left(v_{i} v_{i+1}\right)+2 n-4 ; 1 \leq i \leq n-1$

$$
\begin{aligned}
& \mathrm{g}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{n}-2-\mathrm{i} ; 2 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& \mathrm{~g}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{~W}_{\mathrm{i}}\right)=\mathrm{n}-\mathrm{i} ; 2 \leq \mathrm{i} \leq \mathrm{n}-1
\end{aligned}
$$

In both the cases the induced edge labels are 1,2 .. $3 n-5$.Hence the theorem.

The skolem difference mean labeling of the twigs obtained from P_{5} and P_{6} are given in figures 3 and 4 .

Figure 3

Figure 4
Theorem 2.3. If the path P_{n} is skolem difference mean, then the graph $P_{n} \odot S_{2}$ is skolem difference mean for all values of n.

Proof: Let $v_{1,}, v_{2} \ldots v_{n}$ be the vertices of the path P_{n}.
Let f be the skolem difference mean labeling of the given path as defined in theorem 2.1.

Let f^{*} be the induced edge labeling of f.
Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{S}_{2}\right)=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}^{\prime}}, \mathrm{v}_{\mathrm{i}^{\prime \prime}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{S}_{2}\right)=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}^{\prime}}, \mathrm{v}_{\mathrm{j}} \mathrm{V}_{\mathrm{j}^{\prime}} ; ;\right.$ $1 \leq i \leq n-1,1 \leq j \leq n\}$

Define a labeling $g:\left(P_{n} \odot S_{2}\right) \rightarrow\{1,2 \ldots 6 \mathrm{n}-1\}$ as follows.
Case i: n is odd.

$$
\begin{aligned}
& \mathrm{g}\left(\mathrm{v}_{2 \mathrm{i}+1}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}\right) ; 0 \leq \mathrm{i}<\frac{n+1}{2} \\
& \mathrm{~g}\left(\mathrm{v}_{2 \mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)+4 \mathrm{n} ; 1 \leq \mathrm{i}<\frac{n+1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{g}\left(\mathrm{v}_{2 i+1}\right)^{\prime}=2+10 \mathrm{i} ; 0 \leq \mathrm{i}<\frac{n+1}{2} \\
& \mathrm{~g}\left(\mathrm{v}_{2 i^{\prime}}\right)=\mathrm{g}\left(\mathrm{v}_{2}\right)+4-10 \mathrm{i} ; 1 \leq \mathrm{i}<\frac{n+1}{2} \\
& \mathrm{~g}\left(\mathrm{v}_{2 i+1^{\prime}}\right)=4+10 \mathrm{i} ; 0 \leq \mathrm{i}<\frac{n+1}{2} \\
& \mathrm{~g}\left(\mathrm{v}_{2 i^{\prime}}\right)=\mathrm{g}\left(\mathrm{v}_{2}\right)+2-10 \mathrm{i} ; 1 \leq \mathrm{i}<\frac{n+1}{2}
\end{aligned}
$$

Case ii: n is even.

$$
\begin{aligned}
& \mathrm{g}\left(\mathrm{v}_{2 i+1}\right)=\mathrm{f}\left(\mathrm{v}_{2 i+1}\right) ; 0 \leq \mathrm{i}<\frac{n}{2} \\
& \mathrm{~g}\left(\mathrm{v}_{2 \mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)+4 \mathrm{n} ; 1 \leq \mathrm{i} \leq \frac{n}{2} \\
& \mathrm{~g}\left(\mathrm{v}_{2 i+1^{\prime}}\right)=2+10 \mathrm{i} ; 0 \leq \mathrm{i}<\frac{n}{2} \\
& \mathrm{~g}\left(\mathrm{v}_{2 i^{\prime}}\right)=\mathrm{g}\left(\mathrm{v}_{2}\right)+4-10 \mathrm{i} ; 1 \leq \mathrm{i} \leq \frac{n}{2} \\
& \mathrm{~g}\left(\mathrm{v}_{2 i+1^{\prime \prime}}\right)=4+10 \mathrm{i} ; 0 \leq \mathrm{i}<\frac{n}{2} \\
& \mathrm{~g}\left(\mathrm{v}_{2 i^{\prime \prime}}\right)=\mathrm{g}\left(\mathrm{v}_{2}\right)+2-10 \mathrm{i} ; 1 \leq \mathrm{i} \leq \frac{n}{2}
\end{aligned}
$$

Let g^{*} be the induced edge labeling of g.
Then we have

$$
\begin{aligned}
& g^{*}\left(v_{i} V_{i+1}\right)=f^{*}\left(v_{i} V_{i+1}\right)+2 n \\
& g^{*}\left(v_{i} v_{i^{\prime}}\right)=2 i-1 \\
& g^{*}\left(v_{i} V_{i^{\prime}}\right)=2 i
\end{aligned}
$$

In both the case the induced edge labels are $1,2 \ldots 3 n-1$. Hence, the theorem.

The skolem difference mean labeling of the graph $P_{5} \odot S_{2}$ is given in figure 5

Fig 5
Theorem 2.4. The graph $C_{5} @ K_{1, n}$ is skolem difference mean for all values of n.

Proof: Let $V\left(C_{5} @ K_{1, n}\right)=\left\{u_{i}, v_{j} ; 1 \leq i \leq 5,1 \leq j \leq n\right\}$ and

$$
\mathrm{E}\left(\mathrm{C}_{5} @ \mathrm{~K}_{1, \mathrm{n}}\right)=\left\{\mathrm{u}_{1} \mathrm{u}_{2,} \mathrm{u}_{2} \mathrm{u}_{3}, \mathrm{u}_{3} \mathrm{u}_{4}, \mathrm{u}_{4} \mathrm{u}_{5}, \mathrm{u}_{5} \mathrm{u}_{1}, \mathrm{u}_{1} \mathrm{v}_{\mathrm{j},}, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}
$$

Define a function $f: V\left(\mathrm{C}_{5} @ \mathrm{~K}_{1, \mathrm{n}}\right) \rightarrow\{1,2 \ldots 2 \mathrm{n}+10\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=1 \\
& \mathrm{f}\left(\mathrm{u}_{2}\right)=9 \\
& \mathrm{f}\left(\mathrm{u}_{3}\right)=5 \\
& \mathrm{f}\left(\mathrm{u}_{4}\right)=4 \\
& \mathrm{f}\left(\mathrm{u}_{5}\right)=10 \text { and } \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=10+2 \mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{n}
\end{aligned}
$$

Then the induced edge labels are $1,2 \ldots \mathrm{n}+5$. Hence $C_{5} @ K_{1, n}$ is skolem difference mean for all values of n.

The skolem difference mean labeling of $C_{5} @ K_{1,3}$ is given in figure 6 .

Fig 6

Theorem 2.5. The graph $K_{1} \odot K_{1, n}$ is skolem difference mean for all values of n.

Proof: Let $V\left(K_{1} \odot K_{1, n}\right)=\left\{u, u_{i}, v, v_{i} / 1 \leq i \leq n\right\} a n d E\left(K_{1} \odot K_{1, n}\right)=\left\{u v, u_{i}\right.$, $\left.\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$

Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{K}_{1} \odot \mathrm{~K}_{1, \mathrm{n}}\right) \rightarrow\{1,2 \ldots 4 \mathrm{n}+3\}$ by

$$
\begin{aligned}
& \mathrm{f}(\mathrm{u})=1 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 \mathrm{n}+2-2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}(\mathrm{v})=4 \mathrm{n}+3 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{n}+3-4 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. Then

$$
\begin{aligned}
& \mathrm{f}^{*}(\mathrm{uv})=2 \mathrm{n}+1 \\
& \mathrm{f}^{*}\left(\mathrm{uu}_{\mathrm{i}}\right)=2 \mathrm{n}+1-\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

The induced edge labels are $1,2 \ldots 2 n+1$. Hence the theorem.

The skolem difference mean labeling of $K_{1} \odot K_{1,4}$ is given in figure 7 .

Fig7
Theorem 2.6. Let G be the graph $K_{1, n^{(2)}}$. Then G is skolem difference mean for all values of n.

Proof: Let $V(G)=\left\{u, u_{i}^{\prime}, u_{i}^{\prime \prime} ; 1 \leq i \leq n\right\}$ and $E(G)=\left\{u_{i}{ }^{\prime}, u_{u}{ }^{\prime \prime} ; 1 \leq i \leq n\right\}$
Define a function $f: V(G) \rightarrow\{1,2 \ldots 4 n+1\}$ by

$$
f(u)=4 n+1
$$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right)=2 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}^{\prime \prime}\right)=2 \mathrm{n}-1+2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f.
Then $f^{*}\left(\mathrm{uu}_{\mathrm{i}}{ }^{\prime}\right)=2 \mathrm{n}+1-\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$

$$
\mathrm{f}^{*}\left(\mathrm{uu}_{i}^{\prime \prime}\right)=\mathrm{n}+1-\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}
$$

Then the induced edge labels are 1,2..2n. Hence, the theorem.
The skolem difference mean labeling of the graph $K_{1,3}{ }^{(2)}$ is given in figure 8.

Fig 8
Theorem 2.7. Let G be the graph obtained by identifying the leaves of $K_{1, n}$ with the central vertex of S_{2}. Then G is skolem difference mean for all values of n.
Proof: Let $V(G)=\left\{u_{i}, u_{i}, u_{i}{ }^{\prime}, \mathrm{u}_{\mathrm{i}}{ }^{\prime \prime} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{uu}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}{ }^{\prime}, \mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}{ }^{\prime} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
Define a function $f: V(G) \rightarrow\{1,2 \ldots 6 n+1\}$ by

$$
\begin{aligned}
& \mathrm{f}(\mathrm{u})=6 \mathrm{n}+1 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right)=4 \mathrm{n}+3-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}^{\prime \prime}\right)=4 \mathrm{n}-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. Then

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{uu}_{\mathrm{i}}\right)=3 \mathrm{n}+1-\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{\prime}\right)=2 \mathrm{n}+2-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{\prime \prime}\right)=2 \mathrm{n}+1-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Then the induced edge labels are 1,2 ..3n. Hence, the theorem.

The skolem difference mean labeling of the graph $K_{1,3} \odot S_{2}$ is given in figure 9.

Fig 9
Theorem 2.8 Let G be a graph obtained by identifying a pendant vertex of P_{3} with a leaf of $K_{1, n}$. Then G is skolem difference mean for all values of n.

Proof: Let $V(G)=\left\{v_{,}, v_{i}, u, w ; 1 \leq i \leq n\right\}$ and $E(G)=\left\{v_{i_{i}, v_{n}} u, u w ; 1 \leq i \leq n\right\}$
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2 \ldots 2 \mathrm{n}+5\}$ by

$$
f(v)=2 n+5
$$

$$
f\left(v_{i}\right)=2 i-1 ; 1 \leq i \leq n
$$

$$
f(u)=2 n+3
$$

$$
f(w)=2 n+1
$$

Let f^{*} be the induced edge labeling of f.
Then

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{Vv}_{\mathrm{i}}\right)=\mathrm{n}+3-\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{n}} \mathrm{u}\right)=2 \\
& \mathrm{f}^{*}(\mathrm{uw})=1
\end{aligned}
$$

The induced edge labels are $1,2 \ldots n+2$. Hence, the theorem.

The skolem difference mean labeling of the graph obtained by identifying a pendent vertex of P_{3} with a leaf of $K_{1,7}$ is given in figure 10.

Fig 10

References

[1] V Balaji, D.S.T. Ramesh and A Subramanian, Skolem Mean Labeling, Bulletin of Pure and Applied Sciences, vol.26E, no.2, pp. 245-248, 2007.
[2] F Harary, Graph Theory, New Delhi: Narosa Publishing House, 2001.
[3] B Gayathri and V Vanitha, Directed edge-graceful labeling of cycle and star related graphs, International Journal of Mathematics and Soft Computing, vol.1, no.1, pp. 89-104, 2011.
[4] J A Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 15, 2008.
[5] K Murugan and A Subramanian, Labeling of finite union of paths (communicated)
[6] K Murugan and A Subramanian, Labeling of subdivided graphs (communicated)
[7] K. Murugan and A. Subramanian, Skolem difference mean labeling of H-graphs, International Journal of Mathematics and Soft Computing, vol. 1, no.1, pp.115-129, 2011.
[8] S Somasundaram and R Ponraj, Mean Labeling of Graphs, National Academy Science Letters, 26, pp. 210-213, 2003.

[^0]: * Department of Mathematics, The MDT Hindu College, Tirunelveli627010, Tamil Nadu, India, murugan_mdt@yahoo.com
 † Department of Mathematics, The MDT Hindu College, Tirunelveli627010, Tamil Nadu, India, asmani1963@gmail.com

