Further characterizations and Helly-property in k-trees

H. P. Patil*

Abstract

The purpose of this paper is to obtain a characterization of k-trees in terms of k-connectivity and forbidden subgraphs. Also, we present the other characterizations of k-trees containing the full vertices by using the join operation. Further, we establish the property of k-trees dealing with the degrees and formulate the Helly-property for a family of nontrivial k-paths in a k-tree. We study the planarity of k-trees and express the maximal outerplanar graphs in terms of 2-trees and K_2-neighbourhoods. Finally, the similar type of results for the maximal planar graphs are obtained.

Keywords: Trees, Cycles, Paths, Connected graphs, Triangulated graphs, Planar graphs

Mathematics Subject Classification (2010): 05C10

1. Introduction

All graphs considered here are finite and simple. For any graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set, respectively. The order of G is $|V(G)|$ and its size is $|E(G)|$. A graph of order p and size q is a (p,q)-graph. For any two disjoint graphs G and H, $G + H$ denotes the join of G and H. All definitions and notations are not given here may be found in Harary[4]. A graph G is n-connected if the removal of any m vertices for $0 \leq m < n$, from G results in neither a disconnected graph nor a trivial graph. 1-connected graphs are simply the connected graphs. A graph G is triangulated if every cycle of length strictly greater than 3 possesses a chord. Any n mutually adjacent vertices i.e., K_n in a graph is n-clique. For any set S of vertices of a graph G, $\langle S \rangle$ denotes the induced subgraph of G induced by S. For

*Department of Mathematics, Pondicherry University; hpppondy@gmail.com

Received: April 2016. Reviewed: May 2016
any connected graph G, nG denotes the graph with n components, each being isomorphic to G.

A family of trees, which are connected and acyclic, can be equivalently defined by the following recursive construction rule:

Step 1. A single vertex K_1 is a tree.

Step 2. Any tree of order $n \geq 2$, can be constructed from a tree T of order $(n - 1)$ by inserting an n^{th}-vertex and joining it to any vertex of T.

More general, the multidimensional-trees can be constructed from the above tree-construction procedure by allowing the base of the recursive growth to be any clique. Notice that a connected graph, which is not a tree possesses a tree-like structure, which is actually reflected by constructing the new family of graphs, whose recursive growth just starts from any given clique K_k. This family of graphs are generally known as k-trees or K_k-trees or k-dimensional trees.[1, 5, 7, 8]

Definition 1.1. The family of k-trees (or K_k-trees) is the set of all graphs that can be obtained by the following recursive construction procedure:

1. A clique-K_k is the smallest k-tree.
2. To a k-tree G with $n - 1$ vertices for $n \geq k + 1$, add a new vertex and make it adjacent to any k mutually adjacent vertices of G, so that the resulting k-tree is of order n.

![Figure 1](image)

Figure 1 gives the example of a 3-tree of order 6. Generally speaking, every k-tree G of order $\geq k + 1$, can be reduced to a clique K_k, by sequentially removing the vertices of degree k from G.

2. Properties and Characterizations

We need the following characterization theorem for later use.

Theorem 2.1. [5] Let G be a (p, q)-graph with $p \geq k + 1$. Then G is a k-tree if and only if G is k-connected, triangulated and either G is K_{k+2}-free or $q = (kp - \frac{k(k+1)}{2})$.

2
The immediate consequence of Theorem 2.1 is another characterization of \(k \)-trees in terms of forbidden subgraphs and \(k \)-connectivity.

Corollary 2.2. Let \(G \) be a graph of order at least \(k + 1 \). Then \(G \) is a \(k \)-tree if and only if \(G \) is \(k \)-connected and has no induced subgraph isomorphic to either \(C_n \) for \(n \geq 4 \) or \(K_{k+2} \).

We first obtain the basic property of \(k \)-trees dealing with degrees. For this, we need to establish the following lemma.

Lemma 2.3. Every \(k \)-connected, \((p, q)\)-graph \(G \) with \(p \geq k + 1 \) and \(q = (kp - \frac{k(k+1)}{2}) \), has at least \(k + 1 \) vertices, whose degrees do not exceed \(2k - 1 \).

Proof. Since \(G \) is \(k \)-connected, \(\deg v_i \geq k \) for all \(v_i \) in \(V(G) \). Let \(t \) be the number of vertices in \(G \), whose degrees are at most \(2k - 1 \). Consequently, \(G \) contains \(p - t \) vertices of degrees at least \(2k \). Immediately, we have

\[
\sum_{i=1}^{p} \deg v_i \geq tk + (p - t)2k. \tag{1}
\]

On the other hand, by the handshaking theorem, we have

\[
\sum_{i=1}^{p} \deg v_i = 2q = 2(kp - \frac{k(k+1)}{2}). \tag{2}
\]

From equations (1) and (2), we have

\[
2kp - k(k+1) \geq tk + (p - t)2k.
\]

This shows that \(t \geq k + 1 \) and hence, \(G \) contains at least \(k + 1 \) vertices, whose degrees do not exceed \(2k - 1 \). \(\square \)

The direct consequence of Lemma 2.3 is the following result. Moreover, for \(k = 1 \), this result extends the property of trees (**Corollary 4.1 (a) p.34, [4])**.

Corollary 2.4. Every \(k \)-tree of order at least \(k + 1 \), has at least \(k + 1 \) vertices, whose degrees do not exceed \(2k - 1 \).

Proof. Let \(G \) be a \(k \)-tree of order \(p \geq k + 1 \). By Theorem 2.1, \(G \) is a triangulated, \(k \)-connected graph of size \((kp - \frac{k(k+1)}{2})\). From Lemma 2.3, the result follows. \(\square \)

Next, we show that the bound given in **Corollary 2.4**, is the best possible by constructing below a \(k \)-tree \(G \) with exactly \(k + 1 \) vertices, whose degrees do not exceed \(2k - 1 \). Let \(G \) be a graph consists of \(K_{k+1} \cup \overline{K_{k+1}} \), with all the possible additional edges \(u_iv_j \) for \(i \neq j \), where \(u_i \) and \(v_j \) are the vertices in \(K_{k+1} \) and \(\overline{K_{k+1}} \), respectively (for \(1 \leq i, j \leq k+1 \)). Now, we observe that \(G \) is a \(k \)-tree of order \(2k + 2 \) and it contains \(k + 1 \) vertices of degree \(k \) and \(k + 1 \) vertices of degree \(2k \).
Definition 2.5. Let G be a graph of order p. A vertex v in G is called a full-vertex if $\deg v = p - 1$.

For example, $K_k + \overline{K}_{p-k}$ (for $k < p$), is a k-tree of order p, containing exactly k full-vertices. We now obtain a characterization of k-trees containing at least one full-vertex.

Theorem 2.6. Let G be a graph of order $p \geq k + 1$. Then G is a k-tree containing a full-vertex if and only if G is isomorphic to $K_1 + H$, where H is a $(k - 1)$-tree of order $p - 1$.

Proof. Suppose that G is a k-tree, containing a full-vertex v. By Theorem 2.1, G is a k-connected, triangulated graph of size $(kp - \frac{k(k+1)}{2})$. Let $\langle |v| \rangle \cong K_1$. Since $\deg v = p - 1$ in G, the removal of v from G certainly reduces its connectivity by one, without affecting its triangularity property and further, we have

$$|E(G-v)| = (kp - \frac{k(k+1)}{2}) - (p - 1) = (k - 1)(p - 1) - \frac{k(k-1)}{2}.$$

From Theorem 2.1, $G - v$ is a $(k - 1)$-tree of order $p - 1$. However, we see that G is isomorphic to $K_1 + (G - v)$.

Conversely, assume that G is isomorphic to $K_1 + H$, where H is a $(k - 1)$-tree of order $p - 1$. Since $\deg v = p - 1$ in G, it follows that H is isomorphic to $G - v$. Consequently, $G = K_1 + (G - v)$ is a k-connected, triangulated graph of size $(kp - \frac{k(k+1)}{2})$. By Theorem 2.1, G is a k-tree. \qed

Repeated application of Theorem 2.6, yields the general criterion for k-trees containing at most k full-vertices.

Corollary 2.7. Let G be a graph of order $p \geq k + 1$. Then G is a k-tree containing t full-vertices $(1 \leq t \leq k)$ if and only if G is isomorphic to $K_t + T_{p-t}$, where T_{p-t} is a $(k-t)$-tree of order $p - t$ and T_{p-k} is a forest.

3. Helly-property on k-paths

We begin with the notion of m-walk for $m \geq 2$, which extends the concept of a walk (i.e., 1-walk) introduced by Beineke and Pippert.[1]

Definition 3.1. (1). A m-walk for $m \geq 1$, in a graph G, denoted by $W(K_m^0, K_m^n); \ n \geq 0$, is an alternating finite sequence of its distinct cliques K_m and K_{m+1} of the form:

$(K_m^0, K_{m+1}^1, K_m^1, K_{m+1}^2, \ldots, K_m^{n-1}, K_{m+1}^n, K_m^n)$, beginning and ending with the cliques K_m^0 and K_m^n, respectively such that for each i $(1 \leq i \leq n)$, $K_{m+1}^i = K_m^{i-1} \cup K_m^i$ and $K_m^{i-1} \cap K_m^i = K_{m-1}^i$.

(2). A m-walk $W(K_m^0, K_m^n); \ n \geq 0$, is called a m-path if all its cliques
$K^0_m, K^1_m, \ldots, K^n_m$ and $K^1_{m+1}, K^2_{m+1}, \ldots, K^n_{m+1}$ are distinct. The length of a m-path, is the number of occurrences of cliques K^1_{m+1} in it. For example, any clique K^1_m is a trivial m-path; K^1_{m+1} is a nontrivial m-path of length 1; $K^1_m + K^1_2$ is a nontrivial m-path of length 2.

In Figure 2, the anatomy of a 2-path is shown.

Let $\Pi = \{J_i : i \in I\}$ be a family of subsets of a finite set S (where I denotes the index set). Then Π is said to satisfy the Helly-property if $J_i \cap J_j \neq \emptyset$ for all i, j in I, implies that $\cap_{k \in I} J_k \neq \emptyset$.

For example, $\Pi = \{J_1, J_2, J_3\}$, where the nontrivial paths: $J_1 = abc$; $J_2 = cba$; $J_3 = adb$, of the tree $K^1_{1,3}$ as shown in Figure 3.

Notice that every two paths in Π have a nontrivial intersection, but there is no common nontrivial path for all three paths in Π.

We now establish the Helly-property for a family of nontrivial k-paths of a k-tree.

Proposition 3.2. Let $\Pi = \{J_i : i \in I\}$ be a finite family of nontrivial k-paths of a k-tree. If every three k-paths J_i, J_j, J_k for $i, j, k \in I$, have a nontrivial intersection, then $\cap_{n \in I} J_n$ is a nontrivial intersection.

Proof. Let G be a k-tree. We prove the result by induction on the number of nontrivial k-paths of G. Assume that $\cap_{n \in I} J_n$ is isomorphic to W, 5
where \(|J| = t < |I|\); \(J\) is an index set, is a nontrivial \(k\)-path of \(G\).

If \(J_{t+1}\) has no nontrivial intersection with \(W\), then there exist always three \(k\)-paths \(J_{t+1}, J_t, \) and \(J_{t-1}\) of \(G\), which have no nontrivial intersection. (In fact, for \(k = 1\), this fact is illustrated in Figure 4). This is a contradiction to the hypothesis. Hence, the desired property is proved.

\[\]

4. Planarity and Clique-neighbourhoods

The *neighbourhood* of a vertex \(u\) in a graph \(G\) is the set \(N(u)\) consisting of all the vertices, which are adjacent to \(u\). A vertex \(u\) is *simplicial* if \(N(u)\) induces a clique in \(G\).

Definition 4.1. For any clique \(K_p\) of a graph \(G\) with vertices \(u_1, u_2, u_3, \ldots, u_p\), the \(K_p\)-neighbourhood, denoted by \(N(K_p)\) is \(\cap_{i=1}^{p} N(u_i)\).

Notice that 1-trees (i.e., trees) are obviously planar. The maximal outerplanar graphs are the special class of 2-trees. The triangulated, maximal planar graphs are restricted family of 3-trees. All nontrivial 4-trees (other than \(K_4\)) and \(k\)-trees \((k \geq 5)\) are nonplanar. To study (outer)planarity, let us first establish the following lemma.

Lemma 4.2. Let \(G\) be a \(k\)-tree of order \(\geq k + 1\). For any clique \(K_k\) in \(G\),

\(a\). \(N(K_k) \neq \emptyset\).

\(b\). \(N(K_k)\) is an independent set.
Proof. To prove (a), we use the induction on order \(p \geq k + 1 \) of \(G \). If \(p = k + 1 \), then \(G = K_{k+1} \). Obviously, \(|N(K_k)| = 1 \) for any clique \(K_k \) in \(G \) and hence the result is obvious. We assume that the result holds for any \(p : k + 2 \leq p \leq n \). Let \(G \) be a \(k \)-tree with \(p = n + 1 \). Then by Definition 1.1, \(G \) contains a simplicial vertex \(u \) of degree \(k \) and \(G - u \) is a \(k \)-tree of order \(n \). By induction hypothesis, \(N(K_k) \neq \emptyset \) for any clique \(K_k \) in \(G - u \). Let \(N(u) = \{u_1, u_2, \ldots, u_k\} \) and \(N(u) \) is isomorphic to \(K_k \). Consider any clique \(K'_k \) of \(G \) with \(V(K'_k) = \{u\} \cup (N(u) - \{u_i\}) \) for \(1 \leq i \leq k \). Immediately, we observe that \(N(K'_k) = \{u_i\} \). Thus, \(N(K'_k) \neq \emptyset \). By induction, the result follows for all \(p \geq k + 1 \).

To prove (b), if possible, we assume that for some clique \(K_k \) in \(G \), \(N(K_k) \) is not independent. Then \(G \) contains at least two vertices \(u \) and \(v \) in \(N(K_k) \) such that \(u \) and \(v \) are adjacent in \(G \). This shows that \(\langle N(u) \cup \{u, v\} \rangle \) is isomorphic to \(K_{k+2} \) in \(G \). This is not possible (by Theorem 2.1), because \(G \) is a \(k \)-tree. \qed

In [5], it is proved that any graph \(G \) of order \(\geq 3 \), is maximal outerplanar if and only if \(G \) is 2-connected, triangulated and outerplanar. Next, we present another characterization of a maximal outerplanar graph involving 2-trees and \(K_2 \)-neighbourhoods.

Proposition 4.3. Let \(G \) be a graph of order \(\geq 3 \). Then \(G \) is maximal outerplanar if and only if \(G \) is a 2-tree and for any complete graph \(K_2 \) of \(G \), \(\langle N(K_2) \rangle \) is either \(K_1 \) or \(2K_1 \).

Proof. Suppose that \(G \) is maximal outerplanar. Immediately, \(G \) is 2-connected, triangulated and outerplanar. Since \(G \) is outerplanar, \(G \) is \(K_4 \)-free. By Theorem 2.1 with \(k = 2 \), \(G \) is a 2-tree. On contrary, assume that \(|N(K_2)| \geq 3 \) for some complete graph \(K_2 \) of \(G \). Let \(x, y \) and \(z \) be the vertices in \(N(K_2) \). Consequently, \(\langle u, v, x, y, z \rangle \) isomorphic to \(K_2 + 3K_1 \) appears in \(G \). But \(K_2 + 3K_1 \) contains a subgraph isomorphic to \(K_{2,3} \) and hence \(G \) is not outerplanar. This leads to a contradiction. So, \(|N(K_2)| \leq 2 \) for each complete graph \(K_2 \) of \(G \). From Lemma 4.1 with \(k = 2 \), we have \(|N(K_2)| \geq 1 \) and \(\langle N(K_2) \rangle \) is either \(K_1 \) or \(2K_1 \). Necessity is thus proved.

It is easy to prove the converse. \qed

The immediate consequence of the above proposition is Corollary 11.9 (a) of [4, p. 107]. Certainly, this bound can be improved for nonouterplanar, 2-trees.

Corollary 4.4. Every 2-tree other than maximal outerplanar, has at least three vertices of degree 2.

Proof. Follows from the immediate consequence of Proposition 4.3. \qed
Notice that a maximal planar graph need not be triangulated. For example, \(C_4 + 2K_1 \) is maximal planar but not triangulated.

Proposition 4.5. Let \(G \) be a triangulated graph of order \(\geq 4 \). Then \(G \) is maximal planar if and only if \(G \) is a 3-tree and for any triangle \(K_3 \) in \(G \), \(\langle N(K_3) \rangle \) is either \(K_1 \) or \(2K_1 \).

The proof follows on the similar arguments as used in the proof of Proposition 4.3, by using Theorem 2.1 with \(k = 3 \).

The following corollary is the immediate consequence of the above result.

Corollary 4.6. Every nonplanar 3-tree, has at least three vertices of degree 3.

Acknowledgement

The research was supported by UGC-SAP (DRS-II).

References

