Palladium Catalyzed C-O Bond Formation: Synthesis of Aryl Benzoates

Authors

  • Uttam Karmokar Indian Institute of Technology Hyderabad
  • Basuli Suchand Indian Institute of Technology Hyderabad
  • Sreenivasulu Chinnabattigalla Indian Institute of Technology Hyderabad
  • Satyanarayana Gedu Indian Institute of Technology, Hyderabad

Keywords:

Palladium Catalyzed, Aryl Benzoates, carboxylic acids, aryl iodides

Abstract

A [Pd]-catalyzed intermolecular C-O bond formation strategy, is established towards the synthesis of aryl esters. Coupling of carboxylic acids with iodoarenes has been accomplished. Interestingly, water TBHP served as the reaction medium. This process found to be compatible with a good range of functional groups.

Author Biographies

Uttam Karmokar, Indian Institute of Technology Hyderabad

Department of Chemistry, Indian Institute of Technology, Hyderabad

Kandi – 502 285, Sangareddy

Telangana, INDIA

Basuli Suchand, Indian Institute of Technology Hyderabad

Department of Chemistry, Indian Institute of Technology, Hyderabad

Kandi – 502 285, Sangareddy

Telangana, INDIA

Sreenivasulu Chinnabattigalla, Indian Institute of Technology Hyderabad

Department of Chemistry, Indian Institute of Technology, Hyderabad

Kandi – 502 285, Sangareddy

Telangana, INDIA

Satyanarayana Gedu, Indian Institute of Technology, Hyderabad

Department of Chemistry, Indian Institute of Technology, Hyderabad

Kandi – 502 285, Sangareddy

Telangana, INDIA

References

Reference:

1. (a) K. Fujiwara, T. Sato, Y. Sano, T. Norikura, R. Katoono, T. Suzuki, H. Matsue, J. Org. Chem. 2012, 77, 5161; (b) Y. Q. Ye, C. Negishi, Y. Hongo, H. Koshino, J. I. Onose, N. Abe, S. Takahashi, Bioorg. Med. Chem. 2014, 22, 2442.
2. (a) M. V. Khedkar, T. Sasaki and B. M. Bhanage, ACS Catal. 2013, 3, 287; (b) X. F. Cheng, Y. Li, Y. M. Su, F. Yin, J. Y. Wang, J. Sheng, H. U. Vora, X. S. Wang and J. Q. Yu, J. Am. Chem. Soc. 2013, 135, 1236; (c) J. N. Rosa, R. S. Reddy, N. R. Candeias, P. M. S. D. Cal and P. M. P. Gois, Org. Lett. 2010, 12, 2686; (d) Klare, J. E.; Tulevski, G. S.; Sugo, K.; de Picciotto, A.; White, K. A.; Nuckolls, C. J. Am. Chem. Soc. 2003, 125, 6030.
3. (a) R. Takise, K. Muto and J. Yamaguchi, Chem. Soc. Rev. 2017, 46, 5864; (b) K. W. Quasdorf, X. Tian and N. K. Garg, J. Am. Chem. Soc. 2008, 130, 14422–14423; (c) B. J. Li, Y. Z. Li, X. Y. Lu, J. Liu, B. T. Guan and Z. J. Shi, Angew. Chem. Int. Ed. 2008, 47, 10124; (d) T. Shimasaki, M. Tobisu and N. Chatani, Angew. Chem. Int. Ed. 2010, 49, 2929; (e) R. Takise, K. Itami and J. Yamaguchi, Org. Lett. 2016, 18, 4428.
4. (a) Lu, W.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Wu, H. Org. Lett. 2011, 13, 6114; (b) Chen, M.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. J. Org. Chem. 2015, 80, 1258.
5. D. Rankine, A. Avellaneda, M. R. Hill, C. J. Doonan, C. J. Sumby, Chem. Commun. 2012, 48, 10328.
6. Janina, G.; Adam, D.; Przemyslaw, M. Polym. J. Chem. 1990, 64, 317.
7. (a) R. C. Larock, Comprehensive Organic Transformations, VCH, New York, 1989, p. 966; (b) J. Otera, Esterification: Methods, Reactions and Applications, Wiley, New York, 2003.; (c) J. Otera, Chem. Rev. 1993, 93, 1449–1470; (d) K. Ishihara, Tetrahedron 2009, 65, 1085; (e) A. K. Chakraborti and Shivani, J. Org. Chem. 2006, 71, 5785; (f) M. S. Carle, G. K. Shimokura and G. K. Murphy, Eur. J. Org. Chem. 2016, 3930.
8. (a) A. Shao, J. Zhan, N. Li, C. W. Chiang and A. Lei, J. Org. Chem. 2018, 83, 3582; (b) M. Zhang, R. Ruzi, N. Li, J. Xie and C. Zhu, Org. Chem. Front. 2018, 5, 749; (c) K. Padala and M. Jeganmohan, Chem. Commun. 2013, 49, 9651; (d) J. Wu, K. L. M. Hoang, M. L. Leow and X. W. Liu, Org. Chem. Front. 2015, 2, 502.
9. F. Luo, C. Pan, P. Qian and J. Cheng, Synthesis 2010, 2005.
10. (a) L. Zhang, G. Zhang, M. Zhang and J. Cheng, J. Org. Chem. 2010, 75, 7472; (b) J. J. Dai, J. H. Liu, D. F. Luo and L. Liu, Chem. Commun. 2011, 47, 677; (c) J. S. Ruso, N. Rajendiran and R. S. Kumaran, Tetrahedron Lett. 2014, 55, 2345.
11. (a) T. B. Petersen, R. Khan and B. Olofsson, Org. Lett. 2011, 13, 3462; (b) H. Xie, S. Yang, C. Zhang, M. Ding, M. Liu, J. Guo and F. Zhang, J. Org. Chem. 2017, 82, 5250; (c) T. Dohi, D. Koseki, K. Sumida, K. Okada, S. Mizuno and A. Kato, Adv. Synth. Catal. 2017, 359, 3503; (d) B. Bhattarai, J. H. Tay and P. Nagorn, Chem. Commun. 2015, 51, 5398.
12. (a) F. Ullmann, Ber. Dtsch. Chem. Ges. 1904, 37, 853; (b) J. Lindley, Tetrahedron 1984, 40, 1433; (c) Y. C. Tan, J. T. Muñoz-Molina, G. C. Fu and J. C. Peters, Chem. Sci. 2014, 5, 2831; (d) B. J. Shields, B. Kudisch, G. D. Scholes and A. G. Doyle, J. Am. Chem. Soc. 2018, 140, 3035; (e) W. Zhou, J. W. Schultz, N. P. Rath and L. M. Mirica, J. Am. Chem. Soc. 2015, 137, 7604; (f) Y. W. Zheng, P. Ye, B. Chen, Q. Y. Meng, K. Feng, W. Wang, L. Z. Wu and C. H. Tung, Org. Lett. 2017, 19, 2206.
13. (a) D.L. Zhu, H. X. Li, Z. M. Xu, H. Y. Li, D. J. Young and J. P. Lang, Org. Chem. Front. 2019, 6, 2353; (b) Tue B. Petersen, Rehan Khan, and Berit Olofsson, Org. Lett. 2011, 13, 3462.
14. a) L. Mahendar, J. Krishna, A. G. K. Reddy, B. V. Ramulu and G. Satyanarayana, Org. Lett. 2012, 14, 628; b) D. R. Kumar and G. Satyanarayana, Org. Lett. 2015, 17, 5894; c) J. Krishna, A. G. K. Reddy and G. Satyanarayana, Adv. Synth. Catal. 2015, 357, 3597; (d) B. Suchand and G. Satyanarayana, J. Org. Chem. 2017, 82, 372; (e) B. Suchand and G. Satyanarayana, Eur. J. Org. Chem. 2018, 2233; f) K. Ramesh, and G. Satyanarayana, Green Chem. 2018, 20, 369; g) K. Ramesh, S. Basuli, and G. Satyanarayana, Eur. J. Org. Chem. 2018, 2171.
15. B. Suchand, and G. Satyanarayana, J. Org. Chem. 2016, 81, 6409.

Additional Files

Published

2021-08-28