Expression, Purification and Functional Antibacterial Characterization of Novel Antimicrobial Peptide Gene Pediocin against Salmonella typhii

Authors

  • Vinitha M Department of Biotechnology, Indian Academy Degree College-Autonomous, Bangalore, India
  • Nandhini C Department of Biotechnology, Indian Academy Degree College-Autonomous, Bangalore, India
  • Sudhakar Malla Department of Biotechnology, Indian Academy Degree College-Autonomous, Bangalore, India

DOI:

https://doi.org/10.12723/mjs.55.5

Keywords:

Salmonella, Pediocins, AMPs, Antibacterial activity

Abstract

Salmonella is known to be the major cause for the serious food infections prevailing round the world. Growing resistance to most of the antibiotics also makes the strain more problematic and threat. Food industry is experiencing a fatal loss both in terms of economy and the lives of cattle.

References

Abbas, B.A.; Ghadban, M.K. & Alghanim, A. M. (2017). Microbial evaluation of milk and milk products during a past two decades, in Basrah southern Iraq, a review. Annual Research & Review in Biology, 14(2): 1-8.

Anastasiadou, S.; Papagianni, M.; Filiousis, G.; Ambrosiadis, I. & Koidis, P. (2008). Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: Production conditions, purification and characterization. Bioresource Technol., 99(13): 5384-5390.

Bhunia, A.K.; Johnson, M.C. & Ray, B. (1988). Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. Appl. Microbiol., 65(4): 261-268.

Bhunia, A.K.; Johnson, M.C.; Ray, B. & Kalchayanand, N. (1991). Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. Appl. Microbiol., 70(1): 25-33.

Biswas, S.R.; Ray, P.; Johnson, M.C. & Ray, B. (1991). Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol., 57(4): 1265- 1267.

Sajjad Mohsin Irayyif, Asal Mohseni Sajadi Araghi and SudhakarMalla. Silver Nanoparticles and Their Effect on the Biofilm Formation in Food Borne Salmonella Species. International Journal of Recent Scientific Research.Vol. 6, Issue, 5, pp.4343-4346, May, 2015

Wong, D. M. A.L. F., Hald, T., Wolf, P.J.v.d. & Swanenburg, M. (2002). Epidemiology and control measures for Salmonella in pigs and pork, Livestock Production Science, Vol.76, No.3, (September 2002), pp. 215-222, ISSN 0301-6226

Castellano, P.; Pérez Ibarreche, M.; Blanco Massani, M.; Fontana, C. & Vignolo, G.M. (2017). Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: A focus on meat ecosystems and industrial environments. Microorganisms, 5(3): 38.

Chikindas, M.L.; García-Garcerá, M.J.; Driessen, A.J.; Ledeboer, A.M.; Nissen- Meyer, J.; Nes, I.F.; Abee, T.; Konings, W.N. & Venema, G. (1993). Pediocin PA- 1, a bacteriocin from Pediococcus acidilactici PAC1. 0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Environ. Microbiol., 59(11): 3577-3584.

Kaur, G.; Singh, T.P.; Malik, R.K.; Bhardwaj, A. & De, S. (2014). Antibacterial efficacy of nisin, pediocin 34 and enterocin FH99 against L. monocytogenes, E. faecium and E. faecalis and bacteriocin cross resistance and antibiotic susceptibility of their bacteriocin resistant variants. J. Food Sci. & Tech., 51(2): 233-244.

Parret, A. and De Mot, R. (2000) Novel bacteriocins with predicted tRNase and pore-forming activities in Pseudomonas aeruginosa PAO1. Mol. Microbiol. 35, 472–473.

Fyfe, J.A., Harris, G. and Govan, J.R. (1984) Revised pyocin typing method for Pseudomonas aeruginosa. J. Clin. Microbiol. 20, 47–50.

Combet, C., Blanchet, C., Geourjon, C. and Deleage, G. (2000) NPS@: network protein sequence analysis. Trends Biochem. Sci. 25, 147–150.

Lazdunski, C.J., Bouveret, E., Rigal, A., Journet, L., Lloubes, R. and Benedetti, H. (1998) Colicin import into Escherichia coli cells. J. Bacteriol. 180, 4993–5002.

Cascales, E. et al. (2007) Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229.

Tokuda, H. and Konisky, J. (1978) In vitro depolarization of Escherichia coli membrane vesicles by colicin Ia. J. Biol. Chem. 253, 7731–7737.

Hua Ling, Nazanin Saeidi, Bahareh Haji Rasouliha, Matthew Wook Chang. A predicted S-type pyocin shows a bactericidal activity against clinical Pseudomonas aeruginosa isolates through membrane damage. FEBS Letters 584 (2010) 3354–3358.

Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. (1951). "Protein measurement with the Folin phenol reagent" (PDF). Journal of Biological Chemistry. 193 (1): 265–75. PMID 14907713.

Saha.S and Raghava G.P.S. BcePred:Prediction of Continuous B-Cell Epitopes in Antigenic Sequences Using Physico-chemical Properties. In G.Nicosia, V.Cutello, P.J. Bentley and J.Timis (Eds.) ICARIS 2004, LNCS 3239, 197-204, Springer,2004.

Girish, R., Kumar, A., Khan, S., Dinesh, K. R., & Karim, S. (2013). Revised Ciprofloxacin Breakpoints for Salmonella: Is it Time to Write an Obituary?. Journal of clinical and diagnostic research : JCDR, 7(11), 2467–2469. https://doi.org/10.7860/JCDR/2013/7312.3581

Brunner, H., & Zeiler, H. J. (1988). Oral ciprofloxacin treatment for Salmonella typhimurium infection of normal and immunocompromised mice. Antimicrobial agents and chemotherapy, 32(1), 57–62. https://doi.org/10.1128/aac.32.1.57

Gaussier, H., Lefèvre, T., & Subirade, M. (2003). Binding of pediocin PA-1 with anionic lipid induces model membrane destabilization. Applied and environmental microbiology, 69(11), 6777–6784. https:// doi.org/ 10.1128/aem.69.11.6777-6784.2003

Additional Files

Published

2020-10-01