Solvent Effect on Fluorescence Quenching of 7, 8 Benzo‑4‑azido Methyl Coumarin by Aniline

Authors

  • R M Melavanki Department of Physics, M S Ramaiah Institute of Technology Bangalore-560054, Karnataka, India
  • N R Patil Department of Physics, B V B College of Engineering and Technology, Hubli-580031, Karnataka, India
  • D Nagaraja Department of Physics, Bangalore Institute of Technology, Bangalore-560004, Karnataka, India
  • H D Patil Department of Physics, Basaveshwar Science College, Bagalkot-587101, Karnataka, India
  • J S Kadadevarmath Department of Physics, Karnatak University Dharwad-580003, Karnataka, India
  • R A Kusanur Department of Chemistry, R V College of Engineering, Bangalore-560059, Karnataka, India

DOI:

https://doi.org/10.12723/mjs.24.7

Keywords:

Fluorescence quenching, 7, 8 benzo‑4‑azidomethyl coumarin, diffusion limited, static and dynamic quenching, finite sink approximation model.

Abstract

Fluorescence quenching of biologically active studies of 7, 8 benzo-4-azidomethyl coumarin (7BAMC) by aniline in four different organic solvents namely benzene, dioxane, tetrahydrofuran and acetonitrile has been carried out at room temperature with a view to understand the quenching mechanisms. The Stern–Volmer (S-V) plot has been found to be non-linear with a positive deviation for all the solvents studied. In order to interpret these results we have invoked the ground state complex formation and sphere of action static quenching models. Using these models various quenching rate parameters have been determined. The magnitudes of these parameters suggest that sphere of action static quenching model agrees well with the experimental results. Hence the positive deviation is attributed to the static and dynamic quenching. Further, with the use of Finite Sink approximation model, it was possible to check these bimolecular reactions as diffusion-limited and to estimate independently distance parameter R’ and mutual diffusion coefficient D. Finally an effort has been made to correlate the values of R’ and D with the values of the encounter distance R and the mutual coefficient D determined using the Edward’s empirical relation and Stokes – Einstein relation.

References

K. K. Rothatgi-Mukherjee, Fundamental of Photochemistry, Wiley Eastern Ltd., New Delhi, India, 1986.

J. R. Lackowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, 1983.

T. Moriya, ““Excited-state Reactions of Coumarins in Aqueous Solutions. II. The Fluorescence Quenching of 7-Ethoxycoumarins by Halide Ions” Bull. Chem. Soc. Jpn., vol. 57, p. 1723, 1984. http:// dx.doi.org/10.1246/bcsj.57.1723.

E. A. Lissi, M. V. Encinas, S. G. Birtolotti, J. J. Cosa and C. M. Previtali, “Fluorescence Quenching of Indolic Compounds in reverse Micelles of AOT,” Photochem. Photobiol, vol. 51, p. 53, 1990. http://dx.doi.org/10.1111/j.1751-1097.1990.tb01683.x.

R. M. Melavanki, R. A. Kusanur, M. V. Kulakarni and J. S. Kadadevaramath, “Role of solvent polarity on the fluorescence quenching of newly synthesized 7,8-benzo-4-azidomethyl coumarin by aniline in benzene–acetonitrile mixtures”, J. Lumin., vol. 128, p. 573, 2007. http://dx.doi.org/10.1016/j.jlumin.2007.08.013.

R. M. Melavanki, R. A. Kusanur, M. V. Kulakarni and J. S. Kadadevaramath, “Quenching mechanisms of 5BAMC by aniline in different solvents using Stern–Volmer plots,” J. Lumin., vol. 129,

p. 1298, 2009. http://dx.doi.org/10.1016/j.jlumin.2009.06.011.

R. M. Melavanki, R. A. Kusanur, J. S. Kadadevaramath and M. V. Kulakarni, “Effect of Solvent Polarity on the Fluorescence Quenching of Biologically Active 5BAMC by Aniline in Binary Solvent Mixtures,” J. Fluoresc., vol. 20, p. 1175, 2010. http://dx.doi.org/ 10.1007/s10895-010-0664-7.

N. R. Patil, R. M. Melavanki, S. B. Kapatakar, K. Chandrasekhar, H. D. Patil and S. Umapathy, “Fluorescence quenching of biologically active carboxamide by aniline and carbon tetrachloride in different solvents using Stern–Volmer plots,” Spectrochimica Acta Part A., vol. 79, p. 1985, 2011. http://dx.doi.org/10.1016/j.saa.2011.05.104.

N. R. Patil, R. M. Melavanki, S. B. Kapatakar, K. Chandrasekhar, N. H. Ayachit and S. Umapathy, “Solvent effect on the fluorescence quenching of biologically active carboxamide by aniline and carbon tetrachloride in different solvents using S–V plots”, vol. 132, p. 558, 2012. http://dx.doi.org/10.1016/j.jlumin.2011.08.036.

R. M. Melavanki, N. R. Patil, H. D. Patil, R. A. Kusanur and J. S. Kadadevaramath, “Steady state and time resolved methods of fluorescence quenching of three coumarin dyes using S-V plots,” Ind. J. Pure and Appl. Phys., vol. 49, p. 748, 2011.

J. C. Andre, M. Niclause and W. R. Ware, “Kinetics of partly diffusion controlled reactions. I. Transient and apparent transient effect in fluorescence quenching,” Chem. Phys., vol. 28, p. 371, 1978. http://dx.doi.org/10.1016/0301-0104(78)80014-7.

P. K. Behera and A. K. Mishra, “Static and dynamic model for 1-naphthol fluorescence quenching by carbon tetrachloride in dioxane—acetonitrile mixtures,” J. Photochem. Photobiol. A, vol. 71, p. 115, 1993. http://dx.doi.org/10.1016/1010-6030(93)85061-C.

T. L. Nemzek and W. R. Ware, “Kinetics of diffusion‐controlled reactions: Transient effects in fluorescence quenching,” J. Chem, Phys., vol. 62, p. 477, 1975. http://dx.doi.org/10.1063/1.430501 .

J. M. Frank and S. J. Wawilow, “Spehere of action of the extinction phenomenon in fluorescent liquids,” Z. Phys, vol. 69, p. 100, 1931.

H. Zeng and G. Durocher, “Analysis of fluorescence quenching in some antioxidants from non-linear Stern—Volmer plots,” J. Lumin, vol. 63, pp. 75, 1995. http://dx.doi.org/10.1016/0022-2313(94)00045-E.

J. Keizer, “Nonequilibrium statistical thermodynamics and the effect of diffusion on chemical reaction rates,” J. Phy. Chem., vol. 86, p. 5052, 1982. http://dx.doi.org/10.1021/j100223a004.

J. Keizer, “Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots,” J. Am. Chem. Soc, vol. 105, p. 1494, 1983. http://dx.doi.org/10.1021/ja00344a013.

J. Keiger, “Additions and Corrections - Nonlinear Fluorescence Quenching and the Origin of Positive Curvature in Stern-Volmer Plots,” J. Am, Chem. Soc., vol. 107, p. 5319, 1985. http:// dx.doi.org/10.1021/ja00304a601.

J. Keizer, “Diffusion effects on rapid bimolecular chemical reactions,” Chem. Rev., vol. 87, p. 167, 1987. http://dx.doi.org/ 10.1021/ cr00077a009.

G. C. Joshi, R. Bhatnagar, S. Doraiswamy and N. Periasamy, “Diffusion-controlled reactions: transient effects in the fluorescence quenching of indole and N-acetyltryptophanamide in water,” J. Phy. Chem., vol. 94, p. 2908, 1990. http://dx.doi.org/ 10.1021/ j100370a033.

R. A. Kusanur and M. V. Kulakarni, Ind. Counc. Chem. 22nd Conference, Roorkee (Uttaranchal), 00-29, 2003,

B. B. Dey and Y. Shankaranaraayan, J. Ind. Chem. Soc, vol. 11, p. 687, 1934.

S. Rangaswamy, T. R. Sheshadri and V Venkateshwaralu, Proc. Ind. Acad. Sci., vol. 13A, p. 316, 1941.

J. T. Edward, “Molecular Volume. Parachor”, Chem, Ind., London 774, 1956.

Published

2013-02-07

Most read articles by the same author(s)