Analysis of Fluorescence Quenching of BPBD by Aniline in Toluene

Authors

  • J Thipperudrappa Department of Physics, BNM Institute of Technology, Bangalore-560 070, India
  • S M Hanagodimath Department of Physics, Gulbarga University, Gulbarga-585 106, India

DOI:

https://doi.org/10.12723/mjs.24.8

Keywords:

Fluorescence quenching, stern–volmer plot, BPBD, static quenching, dynamic quenching, finite sink approximation model

Abstract

Fluorescence quenching of 2-(4'-t-Butylphenyl)-5-(4"-biphenylyl)-1,3,4-oxadiazole (BPBD) by aniline in toluene has been carried out at room temperature by steady state and time resolved fluorescence spectroscopy. The Stern-Volmer plot by steady state method has been found to be non-linear showing a positive deviation, whereas by time-resolved method it is linear. In order to interpret these results we have used the ground state complex and sphere of action static quenching models. Using these models various rate parameters have been determined. Based on these models, with finite sink approximation model, we conclude that positive deviation Stern-Volmer plot is due to the simultaneous presence of dynamic and static quenching processes.

References

H. R. Deepa, J. Thipperudrappa and H. M. Suresh Kumar, “Fluorescence quenching studies of 6,7,8,9-tetrahydro-6,8,9-trimethyl-4-(trifluoromethyl)-2H-pyrano[2,3-b][1,8]naphthyridin-2-one by aromatic amines in alcohols,” Int. J. Phy. & Appl., vol. 4(2), p. 157, 2012. ISSN 0974-3103.

H. R. Deepa, J. Thipperudrappa, and H. M. Suresh Kumar, “ A study on fluorescence quenching of LD-425 by aromatic amines in 1,4-dioxane-acetonitrile mixtures,” J. Lumin., vol. 132, p. 1382, 2012. http://dx.doi.org/10.1016/j.jlumin.2012.01.008.

B. G. Evale, and S. M. Hanagodimath, “Static and dynamic quenching of biologically active coumarin derivative by aniline in benzene–acetonitrile mixtures,” J. Lumin., vol. 130, p. 1330, 2010. http://dx.doi.org/10.1016/j.jlumin.2010.03.011.

Y. Ni, S. Su, and S. Kokot, “Spectrometric studies on the interaction of fluoroquinolones and bovine serum albumin,” Spectrochim. Acta Part A, vol. 75, p. 547, 2010. http://dx.doi.org/10.1016/j.saa.2009.11.014.

B. G. Evale, and S. M. Hanagodimath, “Effect of temperature and quencher on the fluorescence of 4-(5-methyl-3-furan-2-yl-benzofuran-2-yl)-7-methyl-chromen-2-one in different solvents” Spectrochim. Acta Part A, vol. 75, p. 1592, 2010. http://dx.doi.org/10.1016/j.saa.2010.02.024.

S. M. Hanagodimath, B. Siddlingeshwar, J. Thipperudrappa, S. K. B. Hadimani, “Fluorescence-quenching studies and temperature dependence of fluorescence quantum yield, decay time and intersystem crossing activation energy of TPB” J. Lumin., vol. 129, p.335, 2009. http://dx.doi.org/10.1016/j.jlumin.2008.10.016.

R. M. Melavanki, R. A. Kusanur, J. S. Kadadevaramath, and M. V. Kulakarni, “Quenching mechanisms of 5BAMC by aniline in different solvents using Stern–Volmer plots”, J. Lumin., vol. 129, p.1298, 2009. http://dx.doi.org/10.1016/j.jlumin.2009.06.011.

C. Tablet and M. Hillerbrand, “Quenching of fluorescence of 3-carboxy-5,6-benzocoumarin by aromatic amines”, J. Photochem. Photobiol. A Chem., vol. 189, p. 73, 2007. http://dx.doi.org/ 10.1016/j.jphotochem.2007.01.009.

D. S. Biradar, J. Thipperudrappa and S.M. Hanagodimath, “Fluorescence quenching studies of 1, 3 – diphenyl benzene,”, Spectrosc. Lett., vol. 40, p. 559, 2007. http://dx.doi.org/ 10.1080/00387010701301147.

C. Hariharan, A. K. Mishra, “Quenching of liquid scintillators by chloroalkanes and chloroalkenes”, Radiat. Measure. vol. 32, p. 113, 2000. http://dx.doi.org/10.1016/S1350-4487 (99)00246-2.

P. K. Behera and A. K. Mishra, “Static and dynamic model for 1-napthol fluorescence quenching by CCl4 in dioxane-acetonitrile mixtures”, J. Photochem. Photobiol. Chem. Part A , vol. 71, p. 115, 1993. http://dx.doi.org/10.1016/1010-6030(93)85061-C.

G. Santos, F. J. Fonseca, A. M. Andrade, I. Grova, L. Akcelrud, L. Pereira, “Polymer light emitting diode using PFT--poly(9,9'-n-dihexil-2,7-fluorenodiilvinylene-alt-2,5thiophene, J.Nanosci. Nanotechnol., vol. 10, p. 2776, 2010. http://dx.doi.org /10.1166/ jnn.2010.1410.

B. Debasis, Q. Lei, T. Teng-Kuan,H. H. Paul, “Quantum Dots and Their Multimodal Applications: A Review”, Material., vol. 3, p. 2260, 2010. http://dx. doi.org/10.3390/ma3042260.

M. Takiue, and H. Ishikawa, “Improvement of Cherenkov counting method (author's transl)”, Radioisotopes., vol. 27, p. 123-127, 1978. ISSN:0033-8303.

G. Gezelius, “A convenient, efficient and inexpensive method for scintillation counting of polyacrylamide gel slices after electrophoresis”, Analy. Biochem, vol. 80, p. 627, 1977. http://dx.doi.org/10.1016/0003-2697(77)90688-1.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Ed., Springer, New York, 2006.

M. N. Swaminathan, and N. Radha,“ Static and dynamic quenching model for 4-amino diphenyl fluorescence quenching by CCl4 in hexane”, Spectrochim. Acta Part A, vol. 60, p.1839, 2004. http://dx.doi.org/10.1016/j.saa.2003.09.023.

J. T. Edward, “Molecular volumes and the Stokes–Einstein equation”, J. Chem. Edu., vol. 47, p. 261, 1970. http://dx.doi.org /10.1021/ed047p261.

J. C. Andre, M. Niclause, and W.R. Ware, “Kinetics of partly diffusion controlled reactions I. Transient and apparent transient effect in fluorescence quenching”, Chem. Phys., vol. 28, p. 371, 1978. http://dx.doi.org/10.1016/0301-0104 (78)80014-7.

H. Zeng and G. Durocher, “Analysis of fluorescence quenching in some antioxidants from nonlinear Stern–Volmer Plots”, J. Lumin., vol. 63, pp. 74-84, 1995. http://dx.doi.org/10.1016/0022-2313(94)00045-E.

J. Keizer, “Diffusion effects on rapid bimolecular reactions”, Chem. Rev., vol. 87, p. 167, 1987. http://dx.doi.org /10.1021/ cr00077a009.

G. C. Joshi, R. Bhatnagar, S. Doraiswamy, and N. Periaswamy, “Diffusion controlled reactions: Transient effects in the fluorescence quenching of indole and N-acetyltryptophanamide in water”, J. Phys. Chem., vol. 94, p. 2908, 1990. http://dx.doi.org /10.1021/j100370a033.

Published

2013-02-13