Fe Substituted SrTiO3 as Visible Light Active Photosensitive Material for Solar-Hydrogen Generation

Authors

  • T Radhika Scientist B, Centre for Materials for Electronics Technology [C-MET], (Scientific Society under M/o Communications and Information Technology, India) M.G. Kavu P.O., Athani, Thrissur, Kerala, India-680581
  • K Keerthi Centre for Materials for Electronics Technology

DOI:

https://doi.org/10.12723/mjs.25.3

Keywords:

Solar-hydrogen, SrTiO3, Fe substation, Visible, Photosensitive, Water-splitting

Abstract

Perovskite SrTiO3 and Fe Substituted SrTiO3 were prepared by solid-state reaction route as visible light active photosensitive materials for solar-hydrogen generation applications. Powder X-ray diffraction pattern confirms the formation of crystalline perovskite SrTiO3 phase at sintering temperature of 1273 K. The pattern of Fe substituted SrTiO3 exhibits number of peaks with splits and less crystalline indicating a lower symmetry structure upon substation at Sr and Ti sites. Crystallinity and crystallite size also finds decrease with increased Fe substitution. The band gap of SrTiO3 obtained by DR UV-Vis absorbance analysis at various sintering temperature approaches the theoretical value 3.06 eV. However, on Fe substitution the band gap is reduced to ~ 2.0-2.5 eV suggesting the materials can extend its absorption to the visible range also. FT-IR spectra confirmed that the Fe substituted SrTiO3 is similar to that of pure phase with bands corresponding to the hydroxyl and carboxyl groups. Since the substituted materials show reduced band gap, these materials can be utilized for photosensitive solar-hydrogen generation.

Author Biographies

T Radhika, Scientist B, Centre for Materials for Electronics Technology [C-MET], (Scientific Society under M/o Communications and Information Technology, India) M.G. Kavu P.O., Athani, Thrissur, Kerala, India-680581

Scientist B, Centre for Materials for Electronics Technology [C-MET], (Scientific Society under M/o Communications and Information Technology, India) M.G. Kavu P.O., Athani, Thrissur, Kerala, India-680581

K Keerthi, Centre for Materials for Electronics Technology

Centre for Materials for Electronics Technology

References

J. Nowotny and L. R. Sheppard,“Solar-hydrogen,” Int. J. Hydrogen Energy. vol. 32, pp. 2607-2608, Sept. 2007. doi:10.1016/ j.ijhydene.2006.09.003

J. Nowotny, C. C. Soreell, L. R. Sheppard and T. Bak, “Solar-hydrogen: Environmentally safe fuel for the future,” Int. J. Hydrogen Energy. vol. 30, pp. 521-544, Apr. 2005. doi:10.1016/j.ijhydene.2004.06.012

H. I. Karunadasa, C. J. Chang and J.R. Long, “A molecular molybdenum-oxo catalyst for generating hydrogen from water,” Nature, vol. 464, pp.1329-1333, Apr. 2010. doi: 10.1038/nature08969.

M. A. Pena and J. L. G. Fierro, Chemical Structures and Performance of Perovskite Oxides Chem. Rev., vol. 101 (7), pp. 1981–2018, May 2001. doi:10.1021/cr980129f

I. B. Bersuker, The Jahn–Teller Effect, Cambridge Univ Pr, 2006.

M. S. Wrighton, A. B. Ellis, P. T. Wolczanski, D. L. Morse, H. B Abrahamson and D. S. Ginley, “Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential,” J. Am. Chem. Soc., vol. 98, pp. 2774–2779, May 1976. doi:10.1021/ja00426a017

J. D. G Fernandes, D. M. A Melo, L. B Zinner, C. M Salustiano, Z. R Silva, A. E Martinelli, M Cerqueira, C Alves Júnior, E Longo, and M. I. B Bernardi, “Low-temperature synthesis of single-phase crystalline LaNiO3 perovskite via Pechini method,” Materials Letters, vol. 53, pp. 122-125, March 2002. doi:10.1016/S0167-577X(01)00528-6

X. Niu, H. Li, and G. Liu, “Preparation, characterization and photocatalytic properties of REFeO3 (RE = Sm, Eu, Gd),” Journal of Molecular Catalysis A: Chemical, vol. 232, pp. 89-93, May 2005. doi:10.1016/j.molcata.2005.01.022

N. Minh “Solid oxide fuel cell technology—features and applications: Review Article,” Solid State Ionics, vol. 174, pp. 271-277, Oct. 2004. doi:10.1016/j.ssi.2004.07.042

N. Keller, J. Mistrík, S. Visnovský, D. S. Schmool, Y. Dumont, P. Renaudin, M. Guyot and R. Krishnan, “Magneto-optical Faraday and Kerr effect of orthoferrite thin films at high temperatures,” Eur. Phys. J. B., vol. 21, pp. 67-73, May (2001). doi:10.1007/s100510170214

N. Kojima and K. Tsushima, “Recent progress in magneto-optics and research on its applications” Low Temp. Phys., (Review) vol.28, pp. 480, 2002. doi:10.1063/1.1496656

H. Sakakima, M. Satomi, E. Hirota, and H. Adachi, “Spin-valves using perovskite antiferromagnets as the pinning layers “, IEEE Trans. Magn. Vol. 35, pp. 2958-2960, 2002. doi:10.1109/20.801046

C. Alcock, R. Doshi and Y. Shen, “ Perovskite electrodes for sensors”, Solid State Ionics vol. 51, pp. 281, 1992. doi:10.1016/0167-2738(92)90210-G,

L. H. Brixner, “Preparation and properties of the SrTi1 _~Fe~O3 _~/24x/2 system”, Mater. Res. Bull. Vol. 3, pp. 299, 1968.

K. Sahner, D. Schonauer, R. Moos, M. Matam and M. L. Post, “Effect of Electrodes and Zeolite Cover Layer on Hydrocarbon Sensing with p-Type Perovskite SrTi0.8-Fe0.2O3–δ Thick and Thin Films,” Journal of Materials Science, Vol. 41, No. 18, pp. 5828-583, 2006. doi:10.1007/s10853-006-0299-x

W. Menesklou, H. J. Schreiner, K. H. Härdtl and E. Ivers-Tiffée, “High temperature oxygen sensors based on doped SrTiO3”, Sens. Actuators, B Vol. 59, No. 2, pp. 184-189(6), October 1999. doi:10.1016/S0925-4005(99)00218-X

S. Steinsvik, R. Bugge, J. Gjonnes, J. Tafto and T. Norby, “The defect structure of SrTi1-xFexO3-y(x=0.0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS)”, J. Phys. Chem. Solids Vol. 58, No. 6, pp. 969.

K. Sahner, R. Moos, M. Matam, J. J. Tunney and M. Post, “Hydrocarbon sensing with thick and thin film p-type conducting perovskite materials”, Sens. Actuators, B, Vol. 108, pp. 102 -112, 2005. doi:10.1016/j.snb.2004.12.104

S. J. Skinner and J. A. Kilner, “Oxygen ion conductors”, Mater. Today Vol. 6, No. 6, pp. 30-37, 2003. doi:10.1016/S1369-7021(03)00332-8

J. R. Jurado, F. M. Figueiredo, B. Gharbage and J. R. Frade, “Electrochemical permeability of Sr0.7(Ti,Fe)O3−δ materials”, Solid State Ionics, Vol. 118, pp. 89, 1999. doi:10.1016/S0167-2738(98)00471-8

V. Varadan, D. Ghodgaonkar, V. Varadan, J. Kelly and P. Glikerdas, "Ceramic phase shifters for electronically steerable antenna systems," Microw. J. vol. 35, pp. 116-127, 1992.

A. Verma, A. Kumar and S. Bhardwaj, “Correlation between ionic charge and the lattice constant of cubic perovskite solids,”Phys.Status Solidi B, vol. 245 pp. 1520-1526, 2008. doi:10.1002/pssb.200844072

L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louer and P. Scardi, “Rietveld refinement guidelines,” J. Appl. Crystallogr., Vol. 32, pp. 36-50, 1999. doi:10.1107/S0021889898009856

K. Honda and A. Fujishima ,“Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, pp. 37-38, 1972. doi:10.1038/238037a0

A. Millis, B. I. Shraiman and R. Mueller, “Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La1-xSrx MnO3,”Phys. Rev. Lett, vol. 77, pp. 175-178, 1996. doi:10.1103/PhysRevLett.77.175

O. Haas, F. Holzer, S. Müller, J. McBreen, X. Yang, X. Sun and M. Balasubramanian, “X-ray absorption and diffraction studies of La0.6Ca0.4CoO3perovskite, a catalyst for bifunctional oxygen electrodes,” Electrochim. Acta, vol. 47, pp. 3211-3217, 2002. doi:10.1016/S0013-4686(02)00241-4,

I. R. Shein, V. L. Kozhevnikov and A. L. Ivanovskii, “The influence of oxygen vacancies on the electronic and magnetic properties of perovskite-like SrFeO3-X,”J. Phys. Chem. Solids, vol. 67, pp. 1436-1439, 2006. doi:10.1016/j.jpcs.2006.01.108

Y. Joly, D. Cabaret, H. Renevier and C. Natoli, "Electron Population Analysis by Full Potential X-ray Absorption Simulation," Phys. Rev. Lett, vol. 82, pp. 2398-2401, 1999. doi:10.1103/PhysRevLett.82.2398

R. Vedrinskii, V. Kraizman, A. Novakovich, P. Demekhin and S. Urazhdin, “Pre-edge fine structure of the 3d atom K x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals,” J. Phys. Condens, Matter 10, pp. 9561–9580, 1998. doi:10.1088/0953-8984/10/42/021

T. Yamamoto, T. Mizoguchi and I. Tanaka, “Core-hole effect on dipolar and quadrupolar transitions of SrTiO3 and BaTiO3 at Ti Kedge,”Phys. Rev. B, vol. 71, pp. 245113, 2005. doi: 10.1103/PhysRevB.71.245113

D. Cabaret, B. Couzinet, A. Flank, J. Itie, P. Lagarde and A. Polian, “Ti K Pre-Edge in SrTiO3 under Pressure: Experiments and Full-Potential First-Principles Calculations,” XAFS 13 (882), pp. 120-122, 2007. doi: 10.1063/1.2644447

M. Vracar, A. Kuzmin, R. Merkle, J. Purans, E. Kotomin, J. Maier and O. Mathon, “Jahn-Teller distortion around Fe4+ in Sr(FexTi1-x)O3-δ from x-ray absorption spectroscopy, x-ray diffraction, and vibrational spectroscopy,” Phys. Rev. B: Condens. Matter, vol. 76, pp. 174107-174107, 2007. doi:10.1103/PhysRevB.76.174107

M. Belli and A. Scafati, “X-ray absorption near edge structures (XANES) in simple and complex Mn compounds,” Solid State Commun., vol. 35, pp. 355-361, 1980. doi:10.1016/0038-1098(80)90515-3,

F. Bridges, C. H. Booth, M. Anderson, G. H. Kwei, J. J. Neumeier, J. Snyder, J. Mitchell, J.S. Gardner and E. Brosha, “Mn K-edge XANES studies of La1-xAxMnO3 systems (A=Ca, Ba, Pb),” Phys. Rev. B, vol. 63, pp. 214405, 2001. doi:10.1103/PhysRevB.63.214405

V. P. Zakaznova-Herzog, H. W. Nesbitt, G. M. Bancroft and J. S. Tse, “High resolution core and valence band XPS spectra of non-conductor pyroxenes,” Surf. Sci., vol. 600, pp. 3175-3186, 2006. doi:10.1016/ j.susc.2006.06.012,

N. Batis, P. Delichere and H. Batis, “Physicochemical and catalytic properties in methane combustion of La1−xCaxMnO3±y (0 ≤ x ≤ 1; −0.04 ≤ y ≤ 0.24) perovskite-type oxide,” Appl. Catal. Gen., vol. 282, pp.173-180, 2005. doi:10.1016/j.apcata.2004.12.009

D. Fino, N. Russo, E. Cauda, G. Saracco and V. Specchia, “ La-Li-Cr perovskite catalysts for diesel particulate combustion,” Catal. Today, vol. 114, pp. 31-39, 2006. doi:10.1016/j.cattod.2006.02.007

S. M. Lima, J. M. Assaf, M. A. Peña and J. L. G. Fierro, “Structural features of La1− xCexNiO3 mixed oxides and performance for the dry reforming of methane,”Appl. Catal. Gen., vol. 311, pp. 94-104, 2006. doi:10.1016/j.apcata.2006.06.010,

N. Merino, B. Barbero, P. Eloy, L. Cadús, “La1−xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS,” Appl. Surf. Sci., vol. 253, pp. 1489-1493, 2006. doi:10.1016/ j.apsusc.2006.02.035

S. Petrovic, L. Karanovic, P. Stefanov, M. Zdujic, A. Terlecki-Baricevic, "Catalytic combustion of methane over Pd containing perovskite type oxides," Appl. Catal. B, vol. 58, pp. 133-141, 2005. doi:10.1016/j.apcatb.2004.11.020,

M. Sosulnikov, Y. Teterin,“X-ray photoelectron studies of Ca, Sr and Ba and their oxides and carbonates,”J. Electron Spectrosc. Relat. Phenom., vol. 59, pp. 111-126, 1992. doi:10.1016/0368-2048(92)85002-O

Published

2021-08-27