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Abstract

Real-world engineering and industrial processes such as film casting, extrusion,
lubrication, and coating, where precise control of heat transfer and reaction Kinetics is
essential for achieving efficiency and maintaining product quality. Analyzing this
complex system facilitates the optimization of key parameters, including belt velocity,
heat flux, and reaction rates, to enhance thermal efficiency, and mitigate safety risks
such as thermal runaway in reactive environments. This study investigates the thermal
stability of a reactive third-grade fluid thin film flow on a heated moving belt with an
adiabatic-free surface. It assumes an exothermic reaction based on Arrhenius kinetics
while ignoring material consumption. The coupled system of nonlinear ordinary
differential equations is solved using a perturbation approach combined with a
specialized Hermite—Pade” approximation technique. Results indicate that fluid
velocity peaks at the moving belt and diminishes toward the free surface, whereas fluid
temperature reaches its maximum at the free surface. Furthermore, increasing the
moving belt parameter accelerates thermal criticality, leading to an earlier onset of
thermal runaway, highlighting the need for careful parameter optimization to enhance
thermal efficiency and mitigate safety risks in such reactive systems. The moving
heated belt acts as a dynamic boundary condition, effectively replicating

Keywords: Moving belt; Reactive third grade fluid; Hermite—Pade” approximants;
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Cy concentration of the Uy belt constant (m/s)

reactant (mol/L) velocity

A rate constant - T fluid temperature | (K)

E activation energy (kJ/mol) | g gravitational (m/s”)
acceleration

k thermal conductivity (W/m- T, belt temperature | (K)
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m viscous heating - G moving belt -
parameter parameter
w dimensionless velocity | -
GREEK SYMBOLS
u fluid dynamics | (kg/sm) | & activation energy -
viscosity parameter
y) Frank-Kamenetskii - S thin film -
parameter thickness
0 dimensionless - s material -
temperature coefficient
D fluid density (kg/m’) | » dimensionless -
non-Newtonian
parameter

1 Introduction

The heat transfer analysis of non-Newtonian fluid film flow over a vertically
moving heated belt is pivotal for optimizing industrial processes and ensuring high-
quality products. Non-Newtonian fluids possess temperature-sensitive rheological
properties, such as viscosity and elasticity, making thermal management essential for
maintaining flow stability and uniform film thickness [1]. The moving heated belt
serves as a dynamic boundary condition that replicates real-world applications such as
film casting, extrusion, and coating, where precise control of heat transfer and reaction
kinetics is critical to process efficiency and product quality [2]. This analysis facilitates
the optimization of key parameters, including belt velocity, heat flux, and reaction
rates, to enhance thermal efficiency, ensure uniform temperature distribution, and
mitigate risks like thermal runaway in reactive systems. Applications span a variety of
industries, from polymer and composite material production to food processing,
pharmaceutical film formation, and advanced energy systems, where non-Newtonian
fluids are integral to cooling, shaping, and coating processes [3, 4]. By addressing heat
dissipation and thermal stresses, this study contributes to safer, more energy-efficient,
and higher-quality industrial processes, highlighting its importance in modern
engineering research.

Several studies have explored various aspects of non-Newtonian thin-film flows on
moving heated belts. Makinde [5] investigated the gravity-driven flow of non-
Newtonian thin films along heated inclined plates, addressing irreversibilities and
providing approximate analytical solutions using the perturbation method. Siddiqui et
al. [6] examined the flow behaviour of Sisko and Oldroyd six-constant fluid films over
a moving belt, using the Homotopy Perturbation Method (HPM) to derive velocity
profiles and analyze flow dynamics. Nemati et al. [7] studied heat transfer and flow
stability in Sisko and Oldroyd fluid films on vertical belts, employing the Homotopy
Analysis Method (HAM) to reveal the impact of auxiliary parameters on fluid stability
and film thickness. Gul et al. [8] provided exact solutions for two immiscible non-
Newtonian fluids forming a thin film on a vertical moving belt, with a focus on power-
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law fluid models and interlayer interactions. Rahim et al. [9] developed analytical
models for the flow of modified second-grade fluid films, highlighting the influence of
heat transfer and shear rate dependence on industrial processes. Moosavi et al. [10]
applied the variational iteration method to thin-film flows of non-Newtonian fluids,
illustrating the effects of temperature variations under high-shear conditions. Gul et al.
[11] explored magnetohydrodynamic (MHD) thin-film flows of third-grade fluids,
investigating the interplay between magnetic fields, heat flux, and boundary conditions
on vertical belts. Sahoo et al. [12] used finite element methods to study the stability
and thermal dynamics of thin-film flows, emphasizing the role of belt speed and fluid
rheology. Sharma et al. [13] examined viscoelastic properties in non-Newtonian fluid
flows over vertical moving belts, combining analytical and numerical approaches to
provide insights into the influence of rheological parameters on flow dynamics. Ashraf
et al. [14] analyzed heat transfer in Johnson—Segalman fluid films over heated belts,
demonstrating how temperature-dependent viscosity affects film thickness, particularly
in polymer coating processes. Additional studies relevant to this work can be found in
[15, 16].

To the best of the author’s knowledge, no prior studies have specifically investigated
the thermal analysis of a reactive third-grade fluid film flow over a vertically moving
heated belt. Such an analysis is crucial for understanding the complex interplay
between non-Newtonian fluid dynamics, heat transfer, and chemical reactions [17, 18],
which play a significant role in various industrial applications. Third-grade fluids,
characterized by their shear-thinning or shear-thickening behaviour, are commonly
encountered in processes such as polymer manufacturing, chemical coating
applications, and lubrication systems. The addition of a chemically reactive component
further complicates the system, as exothermic reactions significantly influence flow
stability and temperature distribution. This unexplored area underscores the need for
further research to better understand the dynamics of these fluids and develop accurate
models for engineering applications. In this study, the authors address this research gap
by employing the perturbation method and specialized Hermite-Padé approximants
([19, 20]) to solve the coupled nonlinear ordinary differential equations (ODEs)
governing the system. The subsequent sections present the problem formulation,
detailed analysis, and solution approach. Results are displayed graphically and
quantitatively analyzed with respect to various system parameters.

2 Mathematical model

We consider a container filled with an incompressible reactive third-grade non-
Newtonian fluid. A wide heated belt with a constant velocity of U, moves vertically
upward through the container. As depicted in Figure 1, the (., y)-coordinate system is
chosen such that the #-axis is normal to the heated belt, and the j~axis is along the belt
in the upward direction. Since the belt moves upward and passes through the fluid, it
picks up a film fluid of thickness &. Due to gravity, the reactive fluid film tends to
drain down the belt. For simplicity, the following assumptions are made:

(1) The flow is in a steady state.
(i1) The flow is laminar and uniform.

(ii1) The film fluid thickness & is uniform with an adiabatic-free surface.
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(iv)The belt temperature 7} is uniform.

The only velocity component v(x) is in the y-direction, therefore, under these
conditions, the governing momentum and energy balance equations take the form [6-
12];

i
:

v
Belt

/ Fluid layer

AR EUERR AR RANAN

Figure 1: Geometry of the problem.

d*v dzv(dvjz 3
dx

H——+60—

dx dx
2 2 2 _i
k cz;xf + (%} u+2p, (%] +QC,A4e ¥ =0, (2)

subject to the boundary conditions:

ﬂ:O’ E:O, on xX=0, (3a)
dx dx
v=U,, T=T, on x=0, (3b)

where the additional Arrhenius kinetics term in the energy balance equation is due to
the exothermic reaction within the fluid [10]. Here T is the absolute temperature, o is
the thin film thickness, p is the fluid density, g is the gravitational acceleration, £ is the
thermal conductivity of the material, Q is the heat of reaction, 4 is the rate constant, £
is the activation energy, R is the universal gas constant, C is the initial concentration
of the reactant species, f; is the material coefficient and u is the dynamic viscosity
coefficient. It is important to note that the model equations (1)-(2) together with the
moving heated belt and adiabatic thin-film free surface boundary conditions in
equations (3a,b), effectively replicate real-world engineering and industrial processes
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such as film casting, extrusion, lubrication, and coating, where precise control of heat
transfer and reaction kinetics is essential for achieving efficiency and maintaining
product quality. We introduce the following dimensionless variables into equations

(H-G);

E
E(T-Ty) _ «x QEAS8?%Cye RTo v
=, X ==, =, =—,
RTZ 5 TZRk Us
E
_ uugeRTo RTy _ BsUE . _ pgs?
m_QASZCO'E_ E'y_u(Sz'G_,uUO' )

and obtain the dimensionless governing equation together with the corresponding
boundary conditions (neglecting the bar symbol for clarity);

2 2 2
d*w dW(de _G.

a2 T e ©)
2 6 2 2
M+M(l+seJ+m(d_W) 2 2] )|-o ©
dx? dx dx
with
cil_W:O’ ?=0, on x=1, (72)
X X

w=1 6=0, on x=0, (7b)

where G, A, & y and m represent the moving belt parameter, the Frank-Kamenetskii
parameter, the activation energy parameter, the dimensionless non-Newtonian
parameter, and the viscous heating parameter, respectively. In the following sections,
equations (5)-(7) are solved using both perturbation and multivariate series summation
techniques [19, 20].

3 Perturbation method

Due to the nonlinear nature of the velocity and temperature fields equations (5)-
(7), it is convenient to form a power series expansion both in the dimensionless non-
Newtonian parameter y and the Frank-Kamenetskii parameter /4, i.e.,

W:iW,.y", 0:?9,1’1 ®)
i=0

i i=0

Substituting the solution series in equation (8) into equations (5)-(7) and collecting
the coefficients of like powers of yand A, we obtained and solved the equations for the
coefficients of the solution series iteratively. The solutions for the velocity and
temperature fields are given as;
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W(x)=1+%G(xz—2x)—%G3x(x—2)(xz—2x+2)y+26‘5x(x—2)(xz—x+1)()3—3x+3)y2 )
—12G x (x=2) (P -2x+2) (x* =4 +6° —4x+2) ¥ +O(v")

0(x) =— 60;60 x(=2 + x)(30030 — 28028mx?G*y + 5005x%G? — 10010xmG? —

174720mG 0y + 160160mG®y3 — 12012mG*y — 51480mGSy? + 73920mG12yS +
10010mG? — 283140mx?G°y? — 242800mx°G*?y> — 1985984mx°G8y3 +
77220mx°G%y? + 9143680mx5G0y* — 4435200mx3G1?y5 + 308880mx3Goy? +
2754752mx*G83y3 + 8352960mx*G'?y5 + 1601600mx?G8y® — 2562560mx3G8y° +
3727360mx” G10%y* — 205920mx*G°y? — 2766400mx2G0y* + 928928mx°G8y3 —
12870mx°G0y? — 256256mx’ G%y3 — 8619520mx*G%y* + 32032mx°G8y3 +
5712960mx8G12y> — 9715200mx’G'?y° — 6959680mx°G10y* — 126720mx*1G2y> +
16016mx3G*y + 291200mx°G1%y* + 5824000mx3G°y* + 707520mx8G*0y* —
4004mx*G*y + 1700160mx2G*?y> + 10560mx*2G*?y*? — 1339520mx8G 0y * —
29120mx°G10y* — 11679360mx>G'?y5 + 12281280mx°G2y°> — 443520mxG2y> +
154440xmG°y? + 24024xmG*y — 640640xmG8y3 + 873600xmG0y*)A + 0(212).

(10)

By utilizing a computer symbolic algebra package (MAPLE), we computed the first
nineteen terms of the solution series for equations (9) - (10). While these power series
solutions are valid only for very small parameter values, we have extended their
applicability to larger parameter values using the Hermite-Padé approximation
technique, as demonstrated in the following section. The key physical quantities of
interest in this problem are the skin-friction parameter (Cy) and the Nusselt number
(Nu), which are defined by

C, = d, :d_W(O), NuzéE_qg:_ﬁ(o), (11)
; /JU() dx kRTZ) dx

where 7, = udv/dx and q, =—kdT/dxare the shear stress and the heat flux

evaluated at the surface of the moving belt (i.e. x = 0) respectively.
4 Thermal criticality and bifurcation study

To identify the onset of thermal criticality in the system, we utilize a specialized
Hermite-Padé approximation technique. Let's assume that the partial sum

N—1
Uy, (D =D a,A =UA) + O(A" )as 1 -0, (12)
i=0

is given [19, 20]. It is important to note that equation (12) can be applied to
approximate any output of the solution to the problem under investigation, such as the
skin friction (Cy) and the surface heat flux (Nu), since all quantities can be expanded as
a Taylor series in the given small parameter. Assume U(4) is a local representation of
an algebraic function of 4 in the context of nonlinear problems. Thus, we seek an
expression of the form
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Fi(A,U,_) = Ay (A) + A7 (DUY + 47, (DUP + 45, (DU 13)

such that
d+i )
A=1, A (A) =D b, (14)
Jj=1
and
F,(A,U)=0A"")  asn -0, (15)

where d >1,i=1, 2, 3. The condition in equation (14) normalizes F, and ensures that

. d . . .
the order of the series Al.N increases as i and d increase. Consequently, there are

3(2+d) undetermined coefficients b, in the equation (14). The requirement in equation
(15) simplifies the problem to a system of N linear equations for the unknown
coefficients of F;. The entries of the underlying matrix depend solely on the N given
coefficients a;. From this point forward, we shall take

N=3(2+d). (16)

This ensures that the number of equations matches the number of unknowns. Equation
(16) provides the condition for selecting the values of d, and it's important to note that
d depends on the N coefficients of the available partial sum. Equation (15) introduces a
new special type of Hermite-Padé approximants. For example, we let

vh=u, Uv7=17, V=0, amn

and obtain a cubic Pad¢é approximant. This allows us to identify additional solution
branches of the underlying problem beyond the one represented by the original series.
Similarly, we can proceed by setting

uV=u, U?=pu, U®=pU, (18)

in equation (15), where D is the differential operator given by D=d/dA. This results in
second-order differential approximants and allows us to determine the dominant
singularity in the flow field i.e. by equating the coefficient 4;y(4) of the equation (18)
to zero. Meanwhile, it is crucial to understand that the choice of the degrees of 4,y in
equation (13) for this application is based on a straightforward technique for
determining singularities in second-order linear ordinary differential equations with
polynomial coefficients, as well as the potential for multiple solution branches in the
nonlinear problem [19]. In practice, the dominant singularities are typically found at

the zeros of the leading polynomial coefficients (As(;lv)) of the second-order linear

ordinary differential equation in equation (18). According to [20], it is well established
that the dominant behaviour of any solution output to the differential equation can be
characterized for some values of a and H as follows:
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H(A, -4)¢ for
H(A: =) A, = 2| for

a+0,1,2,...
a=0,1,2,..

U z{ as A=A¢ (19)

where H is a constant and A is the critical point with the exponent a. The critical
exponent oy can be readily determined using Newton’s polygon algorithm. Assuming
an algebraic-type singularity as given in equation (19), the exponent can be
approximated by

o, =1- M ) (20)
DA3N (ﬂ’CN)

It is well established that for algebraic equations, the only structurally stable
singularities are simple turning points. Therefore, in practice, one nearly always finds
ay = 1/2.

5 Results and discussion

This study examines the thin film flow of a reactive third-grade fluid over a
vertically moving belt, focusing on its heat transfer characteristics. This subsection
aims to analyze the numerical results for velocity and temperature distributions, skin
friction, and the Nusselt number, along with bifurcation profiles. The influence of
various embedded parameters is explored, with results presented in Tables 1-2 and
Figures 2—7. The bifurcation procedure described in Section 4 was applied to the first
nineteen terms of the solution series, yielding the results presented in Tables 1 and 2
below

Table 1: Computations showing rapid convergence and bifurcation point in the
velocity field (G =1).

d Cf Ve deN
N
1 -1.500191067753 -0.074077212118 0.4999870
9
2 12 -1.500000000000 -0.074074074074 0.5000000
3 15 -1.500000000000 -0.074074074074 0.5000000
4 18 -1.500000000000 -0.074074074074 0.5000000

Table 2: Computations showing thermal criticality for different parameter values

G y Nu(e=0) A.(e=0) a.y
m
1.0 [ 0.1 | 0.0 | 2.002783645 0.8778465618 0.50000
1.0 [ 0.1 | 0.1 | 2.002780204 0.8778470646 0.50000

Page 24



Makinde et al.
1.0 | 0.1 | 0.2 [ 2.002776733 0.8778475707 0.50000

1.0 | 0.1 | 0.3 [2.002773233 0.8778480800 0.50000

1.0 [ 0.2 [ 0.1 | 2.011056222 0.8760288700 0.50000

1.0 [ 0.3 [ 0.1 | 2.024631106 0.8730439477 0.50000

The reactive third-grade fluid under investigation is assumed to be highly
combustible, with large activation energy (i.c., € = 0). The results in Table 1
demonstrate the rapid convergence of our method concerning the non-Newtonian
parameter (y.), the dominant singularity, and its critical exponent (o.) as the number of
series coefficients used in the approximants gradually increases. A bifurcation point, or
turning point, occurs in the flow field at (y., C¢) = (-2/27G?, -3G/2), as illustrated in
Fig. 6. Table 2 shows that the magnitude of thermal criticality (Ac) increases with the
value of the non-Newtonian parameter and decreases with an increasing value of the
moving belt parameter (G). This indicates that increased belt motion may lead to an
earlier onset of the thermal runaway phenomenon, while a higher non-Newtonian
parameter can enhance thermal stability. Furthermore, determining the thermal
criticality values in a reactive third-grade thin film flow over a vertically moving belt
is essential for ensuring safety, efficiency, and reliability in engineering and industrial
applications. It helps prevent runaway reactions and overheating, ensuring that
processes such as film casting, extrusion, lubrication, and coating operate within safe
thermal limits. Understanding thermal criticality allows engineers to design effective
heat management systems, select appropriate materials, and optimize energy usage,
reducing waste and improving overall process efficiency. Additionally, it ensures
scalability, consistent product quality, and compliance with environmental regulations
by controlling emissions and waste heat. Ultimately, thermal criticality analysis is vital
for maintaining safe, sustainable, and high-performance operations in industries that
rely on reactive thin film flows.

Figs. 2 and 3 depict the variation of the fluid velocity field, generally showing a
transverse decrease in fluid velocity, with the maximum at the moving belt and the
minimum at the fluid's free surface. The figures further illustrate that velocity increases
with an increase in y and decreases with an increase in G. Figs. 4 and 5 show a
transverse increase in fluid temperature, peaking at the free surface. It is noteworthy
that fluid temperature rises with increasing values of both the moving belt parameter
(G) and the Frank-Kamenetskii parameter (A), due to Arrhenius kinetics. Fig. 7
presents a slice of the bifurcation diagram for y > 0 in the (A, Nu) plane, illustrating the
variation of moving belt surface heat flux (Nu) with the Frank-Kamenetskii parameter
(X). Notably, there is a critical value Ac (a turning point), where for 0 < A <A, there are
two solutions (labeled I and II). These upper and lower solution branches arise due to
Arrhenius kinetics in the governing thermal boundary layer equation (Eq. 2). For A >
Ac, the system has no real solution, displaying a classical form indicative of thermal
runaway.
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Figure 2: Impact of y on the velocity profiles.
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Figure 3: Impact of G on velocity profiles.
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Figure 4: Impact of 4 on temperature profiles.
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Figure 5: Impact of G on temperature profiles.
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Figure 6: A slice of bifurcation diagram in the (y, Cy) plane (G =1).
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Figure 7: A slice of approximate bifurcation diagram in the (A, Nu(m =1, y = 0.1,
G =0.1, £=0)) plane.

5 Conclusions

This paper investigates the hydrodynamically and thermally developed flow of a
reactive third-grade liquid film along an upward-moving vertical heated belt with an
adiabatic-free surface. The fluid velocity is found to peak near the moving belt and
diminish toward the free surface, while the maximum temperature is observed at the
free surface. Using a specialized Hermite-Padé approximation method, the thermal
criticality conditions and multiple solution branches are accurately determined. The
study reveals that increasing the moving belt parameter accelerates the onset of
thermal runaway within the system. Furthermore, the findings of this study contribute
to preventing overheating, ensuring energy efficiency, and mitigating risks associated
with reactive third-grade fluid film flows, making it invaluable for designing safer and
more efficient systems in chemical, textile, and material processing industries. The
semi-numerical Hermite-Padé approximation approach also demonstrates its
effectiveness in solving other parameter-dependent, highly nonlinear boundary-value
problems in science and engineering. Future research could extend this study by
considering the combined effects of physical factors such as magnetic fields, Joule
heating, thermal radiation, convective heating, and embedded porous media on
reactive non-Newtonian fluid film flows over a vertically moving heated belt.
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