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Abstract

Study of chaos in Rayleigh-Bénard convection of water-alumina nanofluid with inter-
nal heat source/sink is considered in the paper. A generalized Buongiorno two-phase
model is used under the assumption of Boussinesq approximation and small-scale con-
vective motion to formulate the governing equations for the nanofluid. By considering a
minimal-mode Fourier representation, we arrive at the penta-model generalized Lorenz
model. The largest Lyapunov exponent and the Kaplan-Yorke dimension are used to
capture information on the commencement of chaos, windows of chaotic motion and pe-
riodic orbits. Suppression/inhibition of chaos due to presence of nanoparticles and heat
source/sink are discussed. The study on linear stability is made for completeness. The
present investigation reveals that the onset of chaos can be delayed using nanoparticles
in the working medium. A further delay of chaos is possible by having a heat sink in
the fluid layer. Thus the presence of nanoparticles in the fluid medium together with the
internal heat sink leads to a long-term stable periodic orbit.

Keywords: Chaos; Heat source/sink; Lorenz model; Nanofluid.

1 Introduction

Nanofluids are mixtures of any base conventional fluid (hereinafter called as basefluid)
with well-dispersed nano-sized particles (hereinafter called as nanoparticles). Research
reports suggest that Masuda et al. [1] found such fluids. The term nanofluid was coined by
Choi [2]. The choice of basefluids and nanoparticles is based on the application where it is
being put to use. Nanofluids in heat transfer applications are now emerging spectacularly
due to attention-grabbing features of nanoparticles such as high thermal conductivity,
large surface area, stable suspensions without settling of particles, low abrasion, low/no
clogging, low pressure loss and high heat transfer efficiency.

Many models are available in the literature to study the nanofluid based convection.
These models have their own advantages and disadvantages for example, the single-
phase model proposed by Khanafer et al. [3] incorporates the thermophysical properties
of a nanofluid at static condition. This model is engineered under the assumption that
nanoparticles and base fluid are chemically inert. The same time, the two-phase model
proposed by Buongiorno [4] allows a relative velocity between the nanoparticles and
the basefluid. Siddheshwar et al. [5] generalized the Buongiorno two-phase model by
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incorporating thermophysical properties of nanoliquids into the governing conserva-
tion equations. Thus, the generalized Buongiorno two-phase model consists of a two-
component four-equation nonhomogeneous equilibrium model for mass, momentum,
heat and nanoparticle transports.

Studies on controlling chaos in nanofluids concerning heat transfer applications are
limited. Using a single-phase model, Jawdat et al. [6] showed inhibition of chaos in
Rayleigh—Benard convection due to suspension of metal/metallic nanoparticles in water.
Bhardwaj and Das [7] showed that chaos can be significantly controlled by tuning an ap-
plied magnetic field to regulate the Rayleigh number (a non-dimensional parameter that
signifies the onset of convection). To arrive at this result, Bhardwaj and Das [7] considered
Rayleigh—Benard convection in a water-copper-oxide nanofluid under the influence of a
magnetic field. Using the single-phase description of Khanafer et al. [3], Kanchana et al.
[8] made a comparative study of the effects of suspended multiwalled carbon nanotubes
and alumina nanoparticles on the Rayleigh—Bénard convection in water and concluded
that less expensive spherical alumina nanoparticles are preferable to more expensive mul-
tiwalled carbon nanotubes in heat transfer applications. Recently, Siddheshwar et al. [9]
studied the dynamical behavior of the minimal and extended Lorenz models by consider-
ing water-copper and water-alumina nanofluids in the Rayleigh-Bénard convective system
and showed that the extended penta-modal Lorenz system predicts advancement of onset
of chaos when compared with that predicted by the classical third-order Lorenz model.
Further, they reported that the individual influence of both nanoparticles in water is to
advance the onset of chaos. Kanchana et al. [10] studied the influence of two-frequency
rotational modulation on the dynamics of Rayleigh Bénard convection in water based
nanoliquids and showed that there is no possibility of hyper chaos in the system for
considered range of values of system parameters.

The presence of heat source/sink in the RBC problem is a regulatory mechanism to
control heat transfer and chaos. It has applications in many areas. One such study is
the Earth’s mantle. The effect of internal heat generation on nonlinear Rayleigh-Bénard
system was studied by Siddheshwar and Titus [11]. They showed that the effect of heat
source/sink is to advance or delay the appearance of chaos. Linear and weakly nonlinear
stability analyses of Rayleigh-Bénard convection with internal heat generation/absorption
in water-based nanoliquids is studied analytically by Kanchana and Yi [12] using the
generalized Buongiorno two-phase model. Meenakshi and Siddheshwar [13] studied the
same problem using the single-phase model. They showed that the influence of heat
generation/absorption is to augment/inhibit onset of convection and enhance/diminish
heat transport. The linear and weakly nonlinear study of the effect of rotation and internal
heat source/sink on Bénard convection was reported by Sanjalee et al. [14] using the
modified Buongiorno model. They showed that the heat transfer rate increases by 22
% when the nanofluidic system is placed in the rotating frame of reference under the
presence of an internal heat source. The influence of internal heat generation/absorption
on various cases of natural convection is studied by Shivaraj et al. [15] and Yadav et al.
[16].
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The study on chaos in RBC in nanofluids with heat source/sink is very scarce. More
recently, Sanjalee et al.[17] considered such a study under the effect of a non-uniform
heat source in a hybrid Casson nanoliquid and observed significant advance in the onset
of chaos when free-free and rigid-rigid boundaries were considered under the combined
influence of the heat source and the nanoparticles.

In the present study, we have considered the RBC in a water-alumina nanofluid in
the presence of a heat source/sink and reported about the combined influence these
mechanisms have on the onset of chaos and on the periodic orbits. We consider a penta-
modal Lorenz system for the study. We considered the generalized Buongiorno model
proposed by Siddheshwar et al. [5] and arrived at the penta-modal Lorenz model. The
largest Lyapunov exponent, using the algorithm proposed by Wolf et al. [18] and Kaplan-
Yorke dimension [19]-[21], are used to characterize the chaotic and periodic behavior of
the trajectories of the penta-modal system.

2 Mathematical formulation

The set-up of the problem considered is a horizontal layer of infinite extent with
water/water-alumina nanofluid confined between the two parallel planes. If the height of
the plane is 4, and the width is b then h < b is the considered extent of the layer. The
upper and lower boundaries are assumed to be at constant temperatures Ty and 7o + AT
with AT > 0, and constant volumetric nanoparticle concentrations @y and ¢y + A¢ with
(A¢ > 0). As a regulatory mechanism, an uniform heat source/sink is assumed to exist.
A schematic of the set-up is shown in Figure 1. With this aforementioned set-up, the

z=h T=T0, ¢)=¢0
z

Nanofluid with T—» X g

heat source/sink

z=0 T=To+ AT, ¢p=¢o+ A

Figure 1: Physical configuration of the problem.

governing equations take the form:

Vg = o, (1)
dq -
Py, = “VPtHY G+[p—(pBi)(T —Tp)
+(PB2)(¢ — ¢0)] 8, 2
oT
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where ¢ = (u,w) is the velocity vector in m/s, t is time in s, p is the pressure in Pa,
g=(0,0,—g), acceleration due to gravity in m/s?, T is the temperature in K, i, p, B, B>
and o respectively represent dynamic viscosity (in kg /ms), density (in kg/m?), thermal
expansion coefficient (in 1/K), concentration analogy of thermal expansion coefficient
(in 1/Kg) and thermal diffusivity (in m? /s) and these quantities represent the nanofluid
properties, which are calculated using the properties of water and alumina nanoparticles
as shown in Table 1.

Models Quantities

Hamilton-Crosser model [22] — =

b _ 1
tpr (1= )%
(pCp) = (pCp)bl(l _X) +X(pcp)np,
(PB) = (PB)pi(1—x) +2(PB)nps

Brinkman model [23]

Traditional mixture theory Pt = Pu1(1 = X) + XPnp
(PCp) (PB) k
C = s = s oy = ——
v P T gy

Table 1: Models for determining thermophysical properties of nanofluids.

The quantities Dp and Dy are the diffusion coeflicients and are defined as

KT,
B0 and Dy = 0.26 By

Dp =
57 3nud,, 2k +knp P

where y denotes the alumina nanoparticle volume fraction and is calculated as

Volume fraction of alumina

x= Volume fraction of (alumina+water)

While writing the governing equations (1) - (4), we assumed the following:

* All physical quantities are independent of the horizontal coordinate and hence the
considered structure of the cells are rolls.

o It is assumed that the density is constant in all terms in Eq. (2) except the body
force, where it is function of temperature. We thereby imply the assumption of the
Oberbeck-Boussinesq approximation.

 In writing Eq. (2), we ignore the (g-V)g term. Thereby, we mean that only a
small-scale convective motion is considered.
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¢ Alumina nanoparticles are assumed to be uniform in size, spherical in shape and
well dispersed in water.

¢ Alumina nanoparticles and water particles are assumed to be in thermal equilibrium
locally.

¢ The horizontal boundaries are assumed to be stress-free, isothermal and iso-
nanoparticle concentration and are written as :

u=0w= O,gu 3W—OT To+ AT, =do+A¢patz=0
Q)
w=0,w—= o,g” ?V—OT To, ¢ = doatz=h

 There is a relative velocity between water and alumina nanoparticles.

e The effect of Brownian motion is negligibly small ([24], [5]).

All these mentioned assumptions are made for the purpose of making the study theoreti-
cally manageable, and based on previous investigations these assumptions are valid.

At the motionless basic state the governing equations (1)-(4) subject to the boundary
conditions (5) have the following solution:

G =0, (6)
DrAT Z
Ph= / [P0+ (PB2)wi <1 - —) (M’ 2 > — (PBwAT f E)
D7 AT i
~(pBou (h)]dz+c, ™)
T, = Ty + AT f (%) @)
b4 DrAT DrAT /7
% ¢°+( h ( o+ TODB) DpTy” \h ®)
. . . z\ _ sin(VRa (1-5))
where the subscript b denotes the basic state solution, f (—) = - ,
h sin+/Raj
2
Ra; = — is the internal Rayleigh number and C* is an integration constant.

nl
Applying a small thermal perturbation to the system results in

i = 4q, (10)
' DTAT
o= e ep (1-5) (s0+ 750

—(pB1)uAT f (%) (Pﬁz)nzDDTATTf<hﬂ dz+C" +p/, (11)
T — Ty+ATf (%) 4T (12)
o = oe (1) (04 550 ) B s G e
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where the prime denotes perturbation. The primed quantities are considered to be in-
finitesimal in the case of a linear stability analysis and finite when a weakly nonlinear
stability analysis is performed.

Substituting the expressions (10)-(13) in Eqgs. (1) - (4), we obtain the governing equa-
tions in component form as follows:

ou  ow'
it O "
ou' . apl 2.1
Por T Tox TRV "
ow'  dp V2 T ! 16
Py = o THVW +(PB1)uT g~ (PB2)9's, (16)
aT/ B 2 /_ /dTb_ /aT/_ /aT/
at — OCn/V T +QT w d_z u W w aZ 5 (17)
29 = DBV2¢/+&V2T'—WI%—1/8—¢—W/8—¢ (18)

ot T dz ox dz’

Eliminating the pressure term in Egs. (15) and (16) and introducing the stream function,
v, in the form:

oy y
r_9¥Y r_9¥
u = az ) w ax ) (19)
we obtain the governing equations in the form :
d ar’ a¢’
Z(V2wy) = u., V4 el ke
P, (VW) = VW A (PB1)w—5 =8 = (PB2)u — -8 (20)
a1’ oy dl, JwoT JdyoT’
o, V2T s el A Sl Wit il
ar oY O T ax 9r a9z ax 1)
9" _ 200 Dropsy 0wdg, dyade'  dydg’
ar DBV¢+TOVT_8)C dz  Jx az+8z ox (22)
Introducing the following non-dimensional variables
- X Z\ o ot v T’ ¢’
= —-.— = — lP = — = — ¢ = N 23
) =(g) =G Y= 0= A P= %, 23)
Egs. (20)-(22) can be written in dimensionless form as (after neglecting the asterisk):
d 00 P
— (VW) = Pr|a\V*¥+d?Ra= —aiRay—— 24
8t( ) r[al +aj as< —aiRas 5+ |, (24)
8@) \/Rd] 8‘1’
- = V2 R _— VRaj(l1—-2))=—
ot @V O+aiRa®+ siny/Ray cos(vRa( ) JX
_J(\Pa ®)7 (25)
a@ ag 2 alNA 2 a\P
— = —Vo4+—V 14+Ny)=— —J (¥, ®
ot LoV O VO Gy —J(¥.2)
\/Rd[ 8‘1’
—Np——— VRa;(1-2))=—— 2
Na sin+/Ray cos(v/Ras( ) ox’ (26)
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The nondimensional parameters arising in Egs. (24)-(26) are

o
Pr= L( the Prandt]l number) , a; = — ( the diffusivity ratio) ,
po Qpy

ATH
Ra = (PBL—(XS’( the thermal Rayleigh number) ,
(x —
Ray = wRaW( the concentration Rayleigh number) , % . 27
1 a(Pup — Pol
Le = Ley;( the Lewis number) , and

Opr Up

k(2ky, +k,1p) u 2 Pbi _ . o ’
= PHL, ( the modified diffusivity rat
A= K2kt k) s ( the modified diffusivity ratio)

P J

Mo

The terms J(¥,®) and J(¥,®) are defined as Jacobians.
The boundary condition now takes the form:

Y=VW=0=Pp=0atz=0,1. (28)

Using the minimal mode Fourier representation, we next make a weakly nonlinear sta-
bility analysis and arrive at the generalized Lorenz model.
2.1 Derivation of the generalized penta-modal Lorenz model

We perform a weakly nonlinear stability analysis by considering the minimal Fourier
representation for the stream function, temperature, and nanoparticle concentration as
follows:

2a, 687
P(x,yt) = \/_f X (1)g1(x,2), (29)
2K,
2 1
O(x,y1) = %Y (1)g2(x,2) = —Z(1)g3(x,2). (30)
2 1
P(x,y1) = %_L(t)gz(x,Z) + - M(1)g3(x.2), 3D
Rax?m? 2 2 5 .
where r = —56 0 =mn(1+«7) and X(¢),Y(¢),Z(t),L(r) and M(t) are the ampli-
tudes and g;’s are given by:
g1(x,z) = sin(mr.x)sin(nz), (32)
82(x,z2) = cos(mwkex)sin(mz), (33)
g3(x,z) = sin(2mz). (34)

Now substituting Egs. (29)-(31) in Egs. (24)-(26), multiplying the resulting equations
by their respective eigenfunctions as mentioned in Eq. (32)-(34) and integrating over
a pair of rotating and counter-rotating Rayleigh-Bénard cells, i.e., one wave-length, we
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obtain the penta-modal Lorenz model:

C% = Pra [—X—I—Y—rq)L], (35)
% = a :r<l_1r}>X—Y(1—Ra})—XZ], (36)
Z_f — a[-biZ(1-F})+XV], (37)
;l_i - a :(l—fvf?;)X—%Y—iL—i—XM], (38)
in;[ = a :b’}ZAZ—i—;M—XL], (39)
where’c=52t,r¢=1m¢6—ic2nz,Ra}=%”jl=f%andbl=45i22'

The penta-modal Lorenz model is invariant under the following transformation:

(X.Y,Z,L,M) — (-X,—Y,Z,—L,M). (40)

d (dX\ d (dY\ & d (dZ\ d (dL\ d (dM
dX \ drt dy \ dt dzZ \ dt dL \ dt dM \ dt

— _% [14 b+ Le(Pr— (Ray+ry) +2)]

Further,

<0 since a,Le,by,Pr>0and (Ra;+r;) < Pr+2. 41)

Thus, we note that the penta-modal Lorenz model retains features of the classical
Lorenz model, viz., symmetry and dissipative nature.

3 Results and discussion

Study of regular convection, chaos and periodic motion in RBC of water-alumina
nanofluid in the presence of heat source/sink is considered in the paper. The choice of
nanoparticles was made based on the feasibility study reported by Kanchana et al. [8]
which showed many advantages of these choices over other nanoparticles. The thermo-
physical properties of alumina nanoparticles and water base fluid at 300K are recorded
in Table 2.

Using Table 1 and the thermophysical properties of water and alumina nanoparticles
documented in Table 2, we have calculated the thermophysical properties of water-
alumina nanofluid by taking } = 0.04. It is to be noted that the value of y is maintained
to be 0.04 throughout the paper. Further, following the definition of the nondimensional
parameters mentioned in Eq. (27), the values for Pr, Ray, Le and Ny are found by
calculation to be Ray,, =4, Lep; = 2 and Ny = 4 and these recorded in Table 3.
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Material Density | Thermal Conductivity | Specific heat | Thermal expansion coefficient
Water 997 0.613 4179 21 x107°

Alumina 3970 46 765 0.85 x107°

Water-alumina | 1115.92 | 0.687 3693.17 18.13 10

Table 2: Thermophysical properties of various materials at 300°K [25]. For calculating
the thermophysical properties of water-alumina nanofluid the value of y is taken to be
0.04.

Pr Ray Le Ny
5.30221 | 3.06253 | 2.51883 | 4.92846

Table 3: Thermophysical properties of water-alumina nanofluid calculated for y = 0.04.

A linear stability analysis reveals that

Ra Ra,,
0 Ra)(1-rm) ((1—Ra,><1—n>>’ “42)

where F is a factor that gives the ratio of the critical Rayleigh number values of the
water-alumina nanofluid to that of water and is defined as:

Fo (PB1)nf Ot oy ' (43)

pBrau

Using Eq. (42), the values of the critical Rayleigh number of nanofluid and water are
found. A comparison of these values for heat source and heat sink is made and depicted
in the bar chart in Figure 2a. The bar chart in Figure 2b represents the corresponding
critical wave number. These barcharts clearly indicate the advancement of convection due
to the presence of alumina nanoparticles in water. Furthermore, a heat source promotes
convection while heat sink dampens it. The influence of alumina nanoparticles in water is
to increases the value of the critical wave number and thereby we see increased number
of cells in nanofluids compared to that in water. However, the influence of the heat
source/sink on the critical wave number is similar to that seen regarding its influence on
the critical Rayleigh number.

Several metrics are used to characterize chaos[26]. One of them is the largest Lyapunov
exponent(LLE) whose value indicates whether the attractor is a fixed point, a chaotic
attractor, or a periodic orbit:

< 0, afixed point

LLE { =0, a periodic orbit (44)
> 0, a chaotic or strange attractor

To calculate the LLE we followed the algorithm proposed by Wolf et al. [18]. To
solve the penta-modal Lorenz system, the classical fourth order Runge-Kutta method is
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Ra,

-0.5

0.5

-0.5
Ra,

(a) The critical Rayleigh number values

0.5

-0.5

0.5

-0.5
Ray

(b) The critical wave number values

D Water-alumin

Figure 2: Barchart of the values of critical Rayleigh number and wave number for different

cases.
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used with a time step of 0.005. Numerical simulation is performed for both water and
water-alumina in the presence/absence of heat source/sink as shown in Figure 3.

1.
1.0 0
05 05
4 u
0.0 - 0.0
-05 -0.5
0 50 100 150 200 0 50 100 150 200

r r

(a) Water without heat source/sink  (b) Water-alumina without heat

source/sink
1.0
1.0
0.5]
0.5
w w
2 o0 3 o9
-0.5 -0.5]
0 50 100 150 200 0 50 100 150 200
r r
(¢) Water with heat source (d) Water-alumina with heat source
10 1.0
L 05 u 0%
= =1
0.0 0.0
-0.5 -0.5]
0 50 100 150 200 0 50 100 150 200
r r
(e) Water with heat sink (f) Water-alumina with heat sink

Figure 3: Plot of maximum Lyapunov exponent versus r for water and water-alumina
nanofluids in the presence/absence of a heat source/sink.

Figure 3 clearly shows that the onset of chaos is delayed due to the presence of
alumina nanoparticles in water. However, the effect of adding a uniform heat source
leads to preponement of the onset while a heat sink postpones it. Having a heat source
in the system provides energy to the system and hence this observation. An interesting
observation is that the chaotic regime is suppressed due to the presence of alumina
nanoparticle in water. This suppression is significant when a heat source is added. Thus,
the suspension of nanoparticles in the base fluid and introduction of the heat source is
a novel way of suppressing chaos and having long-term stability in the form of periodic
orbits.
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The barchart in Figure 4a reiterates the effects of heat source and heat sink on the
onset of chaos in both water and water-alumina nanofluid. Further, at r = rg, we have
calculated the Kaplan-Yorke dimension (Dky ) using the procedure proposed by Kaplan
and Yorke [19]-[21]. The value of Dgy signifies the nature of the system. For example,
Dgy = O indicates a stable equilibrium point whereas, a non-integer Dgy value represents
the chaotic attractor. The Table 4 and the barchart in Figure 4b clearly show that the Dgy
is not an integer at r = rg indicating the onset of chaotic attractor at r = ry. Further,
these values are large for water-alumina nanofluid compared to that of water indicating
post-ponement of the onset of chaos due to the presence of nanoparticles in water.

50]

| [ weter
1 [] Water-alumina
-05 0 05
@

(b) The values of Kaplan-Yorke dimension

Figure 4: Barchart of values of Hopf Rayleigh number and Kaplan-Yorke dimension for
different cases.

ngﬁirr;g Ra] Rac K Iy D KY
-0.5 | 680.6387 | 0.712994 | 39.9 | 2.90297
Water | 0 649.5107 | 0.707107 | 26.5 | 2.73541
0.5 | 618.8253 | 0.700897 | 17.7 | 2.24497
-0.5 | 515.5348 | 0.712991 | 48 3.24688
0 491.9576 | 0.707107 | 29.9 | 2.91603

0.5 | 468.7156 | 0.7009 18.6 | 2.7584

Water -
alumina

Table 4: Values of Ra,., k., ry and Dgy for different cases.
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Final remark

There are many real world applications where chaotic and periodic motions can be
seen, for example, in the case of liquid crystals, a tumbling or wagging motion of
the director produces a periodic orbit in the rheological properties. Controlling chaotic
motion and/or periodic motion is a challenging task when the chaos needs to be controlled
without disturbing the physical nature of the set-up and the control is only intrinsic. The
present work is one such theoretical experiment to control chaotic and periodic motions.
The final remarks from the study are as follows:

1. Using nanoparticles in a working fluid medium, one can delay the onset of chaos.

2. An effective way of delaying the appearance of chaos is to have a heat sink in the
system. A heat source advances the onset of chaos.

3. It is possible to have long-term stable periodic orbits in the system by opting
nanofluid over base fluid as a working fluid medium.

4. One can favor chaos over periodic motion by considering a heat sink.

The above observations are for certain fixed value of non-dimensional parameters. It is
not true for all values of the parameters. Furthermore, the dynamical system considered
here is a penta-modal Lorenz model with the possibility of the hyper chaos. This forms
the future scope of the study.
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