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Abstract

The current work aims to analyze the impact of Brinkman number and variable MHD
on Bi-viscous Bingham hybrid nanofluid flow across the penetrable sheet with heat
transfer. Molybdenum disulfide (MoS,) and Graphite oxide (GO) nanoparticles are
dispersed in Sodium alginate (S4) to form a hybrid nanofluid. Using similarity
conversions, the governing nonlincar PDEs for momentum, temperature, and
concentration are transformed into ODEs along with the boundary condition. In the
fluid region, the heat balance is kept conservative with a source/sink that relies on the
temperature, and in the case of radiation, Bvp-4c, and shooting method to obtain the
numerical solutions. Furthermore, the results of the current problem can be discussed
by implementing a graphical representation with different factors, The results of the
present analysis define that upsurging the inverse Darcy number decays the axial
velocity, and increasing the thermal radiation raises the temperature. The current
problem contains many industrial uses in technology and industrial processes, like
Aerodynamics in vehicle design, blood flow in medicine, and oil and gas extraction.

Keywords: Thermal radiation; Heat source/sink; Inclined magnetic field; Bi-viscous
Bingham fluid; Porous media.

Nomenclature

List of symbols Descriptions SI unit
a Stretching coefficient s
A, A, 4,4, A Constants [-]

G, Specific heat co-efficient [JK'Kg"]
f (77) Velocity function [-]
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Bingham fluids, characterized by their yield-stress behavior, have a wide range of
applications across various industries. These viscoplastic materials behave like a solid
until a certain stress threshold is exceeded, beyond which they flow like a viscous
fluid. This unique property is utilized in the petroleum industry for drilling muds,
which must remain stationary to support the wellbore walls but flow under applied
stress to carry drill cuttings to the surface. In the food industry, products like
mayonnaise and ketchup exhibit Bingham plastic behavior, allowing them to be easily
spread or squeezed from containers but hold shape when at rest. The construction
industry benefits from this fluid characteristic in cement and concrete handling,
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ensuring that these materials are workable when needed but set without sagging or
spreading. Additionally, Bingham fluids play a crucial role in biomedical applications,
particularly in the formulation of creams and ointments that require ease of application
but also need to stay in place on the skin. The understanding and modeling of Bingham
fluid flow are essential for optimizing these applications, ensuring efficient and
effective use of materials with such complex rheological properties. Sachhin [1]
studied the drag coefficient and magnetic effect on nanofluids by using the
hypergeometric method. Wu [2] studied the moving of Bingham fluid in porous media
by developing single-phase flow with integral methods. Turan [3] studied the Bingham
model by using the 2-D laminar flow of nanofluid over heated side walls. Vola [4]
studied the Galerkin method with convection decomposition of the movement of
Bingham fluids by using constitutive law. Mahabaleshwar [5] studied the fluid flow
over stretching sheets.

The Brinkman number is a dimensionless term which is relevant in the context of
polymer processing and other engineering applications where heat conduction and
viscous dissipation are significant factors. This parameter is instrumental in designing
systems where precise temperature control is essential, such as in screw extruders used
in polymer processing. In these systems, the balance between the energy supplied by
the motor and the heaters is critical for the quality of the final product. Understanding
and applying the Brinkman number can lead to more efficient and effective thermal
management in various fluid flow scenarios. Sachhin [6] and Siddeshwar [7] explored
the influence of heat transfer on nanofluid flows of Couplestress fluids with Darcy-
Brinkman effects. Rahman [8] focused on a steady flow of dusty fluids flow over slip
geometry with the effects of dissipation and Brinkman ratio. Zhang [9] studied the
electromagnetic effect of Newtonian fluid flow with the Brinkman model. Abo [10]
studied the influence of the Darcy-Brinkman model on dielectric fluid movement via
the wavy sinusoidal channel. Yao [11] studied the Darcy and Brinkman equations on
the fluid flow over porous media.

The interplay between chemical reactions and fluid flow is a cornerstone of
numerous industrial and natural processes. In the realm of environmental engineering,
this interaction is crucial for the design of efficient waste-water treatment systems,
where chemical reactions are used to break down pollutants. In the field of energy, the
principles of fluid dynamics and chemical kinetics are applied to optimize combustion
in engines and turbines, ensuring complete fuel utilization and reduced emissions. Jena
[12] studied the chemical reaction effect on Jeffrey's fluid movement of porous media
and mass transfer. Damseh [13] explored the micropolar fluid movement with natural
convection numerically by using the influence of chemical reactions. Patil [14] studied
the influence of chemically reactive polar fluid flow via a steady plate. Khan [15]
studied the effect of magnetic fluid flow over the sheet with a chemical reaction.
Hosseinzadeh [16] studied the flow of chemically reactive hybrid nanofluid using
Joule heating and the Darcy-Forchheimer model.

Porous media play a crucial play in the mechanics of fluid movement, impacting a
wide range of usages from environmental engineering to petroleum extraction.
Advances in this field continue to enhance our ability to manage natural resources and
develop sustainable industrial practices. For a deeper dive into the basic theory of fluid
flow in porous media, one might explore scientific literature that discusses Darcy's law
and its applications in various fields. Alazmi [17] studied the interfacial expression of
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the porous medium and fluid surface by using different boundary conditions. Misra
[18] studied the magnetic movement of blood in a capillary over the porous wall with
time-dependent momentum. Elgazery [19] focused on the impact of heat generation
and Darcy model on Casson nanofluid flow across the axisymmetric surface. Coulaud
[20] explored the numerical solution for Navier-Stokes equations of fluid flow with the
primary effects in a porous medium. Kaothekar [21] studied the ionized thermal
plasma with thermal instability and astrophysical condensation via porous media.

Solar radiation plays a major role in the dynamics of fluid flow, particularly in
processes where heat transfer is a significant factor. For instance, in the field of
aerospace engineering, thermal radiation is a key consideration in the design of
spacecraft, as it affects the thermal control systems that manage the temperatures
within and on the surface of the spacecraft. In environmental engineering. These
examples highlight the diverse applications of solar radiation in influencing fluid flow
across various scientific and engineering disciplines. Siddeshwar [22] explored the
effect of radiation on fluid movement via a sheet with slip velocity. Yu [23] focused on
the movement of Carbon fluid with thermal boundary conditions. Li [24] studied the
convective movement of magnetic fluid via an inner cylinder with heat transfer and
velocity boundary conditions. [25, 26] studied the movement of a homogeneous
second-grade liquid with solar radiation effects. [27-31] studied the effect of radiation
and MHD on fluid movement over vertical plates. [32-40] explored the numerical
solution for Navier-Stokes equations of fluid flow with the primary effects in a porous
medium using different boundary conditions.

2 Mathematical formulations with solutions

Consider an inclined MHD and heat radiation with porous media in a biviscosity
Bingham chemically reactive fluid flow across a expanding sheet. Considering the

flow as laminar and incompressible, assuming a stretching velocity as U = ax

where @ > (0. The biviscosity Bingham fluid’s rheological expression as follows

Hybrid Nanoparticles
X

Biviscous Bingham fluid

[1,2]

o u=ax

Figure 1: Schematic diagram of fluid flow.
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and viscosity of plastic deformation.
The current problem’s governing equations [6, 22, 28].
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B. Cs are given by [6, 22, 28].

u = ax, v=0 T=T, Cc=C, as y—=0,

u=0, T=T, Cc=C, at y—> o, 6)

where u and v are momentum terms. A ,V, B Sinzr,p,K , O are the

biviscosity Bingham fluid parameter, viscosity, inclined MHD, density, thermal

conductivity, electrical conductivity,

Similarity transformations are given as [18, 22, 28]:

u=axf,(n), v=—avf(), ﬂ:yJ%, 0ly) =

wm=q_g
@)

By using Rosseland’s approach radiation heat flux ¢, is formulated [6, 18, 28] as:

40* T
3k* dy’

qr =
T*=4T°T -3T".

The radiation term in Eq. (4) is calculated as:
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Combining equations (10) and (4) we get:
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by using similarity transformations, equations (3) and (4) simplifies to:
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= , is the magnetic field term,
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a
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a
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, 1s the Heat source/sink,

Vy
Sc = ——, are Schmidt number,

!

o K C
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The modified boundary conditions are as follows [1, 6, 22, 28]:
fa=0,  fm=L  am=l () =1

L,m=0,  0m=0,  f (=0, @(m) =0,
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Nusselt number is calculated as:

"= Xq,,
Khnf (]—:4 - Too) ’

where

166°T ;’ oT
q,=— +K, — is the heat flux at the wall.
3 * "INy ),

Skin Friction Calculation [6, 18, 22]:

Skin frictions calculated as

T, 1) Ky Ou
S AR

y=0
The skin friction is calculated as
1
Re'?Cr=A (1+3) £, (0),
Where
NuRe'? = — (A, + N1)8,(0),

and

Ux
Re = is the local Reynolds number.

(16)

Vy
Table 1: Thermophysical Properties [22, 28].
Properties S4 MoS, GO
o (S/m) 2.6x107* 2.09x10™ 3.2x107*
plkgm™) 989 5.06x10° 1800
C, JK'Kg") 4175 397.21 717
K (kgms”KT) 0.6376 904.4 5000
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Thermo physical properties of hybrid nano particles obtained are defined
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3 Numerical methods with solution [2, 6, 8]

as:

(pPCp),,

(PCp),

J

an

The R-K technique allows you to calculate nonlinear governing equations using
partial derivatives. This approach provides more precise findings than other numerical
techniques. The controlling PDEs are turned into normal differential equations by
applying similarity equations. The use of additional terms reduces nonlinear equations

to linear equations.

We are introducing new variables to convert upper order to a differential equation.

=l =y ="y =0, y=0 y =0, y, =",

The governing equations (27) — (29) are converted to
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Table 2: Comparing of — f° "(0) for different choices of A for
#=¢=Da'=A=0, 7=90", 1 > 0.
M Mabood and Shateyi Abood and Das Present results
[29] [30]

0 -1.0000084 —1.000008 -1.000000

1 1.41421356 1.4142135 1.4142134

5 2.44948974 2.4494897 2.4494897

10 3.31662479 3.3166247 3.3166245
50 7.14142843 7.1414284 7.14142823

Table 3: Comparing of —6 '(0) for various choices of Pr for
$=¢,=Nr=Ni=0.7=90", 1 - oo,

Pr Mabood and Shateyi | Ali[30] Present results
[29]

0.72 0.8088 0.8058 0.809800

1 1.0000 0.9691 1.001211

3 1.9237 1.9144 1.924161

10 3.7207 3.7006 3.720400

4 Results and Discussion

The current work aims to analyze the impact of Brinkman number and variable
MHD on Bi-viscous Bingham hybrid nanofluid flow across the penetrable sheet with
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heat transfer. Molybdenum disulphide (MoS,) and Graphite oxide (GO) nanoparticles
are dispersed in Sodium alginate (SA4) to form a hybrid nanofluid. Using similarity
conversions, the governing nonlinear PDEs for momentum, temperature, and
concentration are transformed into ODEs along with the boundary condition. In the
fluid region, the heat balance is kept conservative with a source/sink that relies on the
temperature, and in the case of radiation, Bvp-4c, and shooting method to gain the
numerical solutions. A graphical representation of several parameters is given as below

and, in all graphs, solid lines denote MoS, + GO / SA hybrid nanofluid and dashed
lines denote GO / SAnanofluid.

A=1,2,3,4 F
L
0.175 >~
3
’
3
0.17
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022 023 o024 0.25

M=12,A=1,Da’ =12, r=45"

0 05 1 1.5 2 25 3 35 4 45 5
n

Figure 2(a): Effect of Brinkman number on transverse velocity.

Plots 2 (a) and (b) represent the transverse and axial momentum graphs for different
choices of the Brinkman parameter, here solid lines denote MoS, + GO/ SA4 hybrid

nanofluid and dashed lines denote GO/ SAnanofluid. Upsurging the Brinkman
number decays the velocity of the fluid movement. Physically, the Brinkman number
influences fluid flow velocity by quantifying the ratio of viscous heat generation to
heat conduction. As Br increases, it indicates a greater role in viscous dissipation,
leading to higher flow velocities in certain conditions, particularly in non-Newtonian
fluids and microchannels. This relationship is crucial for understanding flow
transitions and heat transfer in various engineering applications.

Figure 3 (a) and (b) represent the transverse and axial velocity graph for different
choices of the Bingham parameter. Solid lines denote the hybrid nanofluid and the
dashed line denotes the nanofluid flow. Upsurging the Bingham parameter decays the
momentum of the fluid flow. Physically, the momentum profile generally decays,
indicating a deduction in flow velocity. This is due to the upsurged yield stress and
viscosity associated with higher values of the Bingham which enhances flow
resistance. Consequently, the thickness of the velocity boundary layer also decays.

Figure 4 (a) and (b) represent the transverse and axial momentum graph for various
choices of the Da™. Solid lines denote the hybrid nanofluid and the dashed line denotes
the nanofluid flow. Upsurging the Da"' decays the velocity of the fluid movement.
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Physically, this is because the upsurging in the choices of the Da™ tends to decreases
permeability of the porous medium suggesting increased resistance to flow due to the
existence of porous fiber, resulting in transport slowdown.

Plots 5 (a) and (b) represent the transverse and axial momentum graphs for various
choices of magnetic fields. Solid lines denote the hybrid nanofluid and the dashed line
denotes the nanofluid flow. Upsurging the magnetic field decays the momentum of the
fluid flow. Physically, this is because the Lorentz force obtained by MHD opposes the
fluid flow, which can reduce the momentum of the fluid movement.

M=12,A=1,Da"’ =12, r=45°

05 0027
04 0.026

03 \ 0.025
A=1,2,3,4 0.024

Figure 2(b):
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Figure 3(a): Effect of Bingham on transverse velocity.

M=12,A=1,Da"' =12, r=45"

@

Figure 3(b): Effect of Bingham on axial velocity.

Page 53



Vol. 01, No. 01

Figure 4(a):
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Figure 5 (a): Graph of magnetic field on transverse velocity.
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03 AN M=1,2,3,4
.

Sc=15,Nr=1,Cr*=12,Pr=6.5

Figure 6: Influence of Ni on temperature.

Figure 6 portrays the temperature graph for different choices of heat source/sink.
Solid lines denote the hybrid nanofluid and the dashed line denotes the nanofluid flow.
Upsurging the heat source/sink increases the temperature of the liquid flow.

Physically, the heat source generates more heat energy, causing the fluid temperature
to upsurge.

Sc=1.5,Ni=1, Cr*=12, Pr=6.5

Figure 7: Impact of Nr on temperature.

Figure 7 portrays the temperature graph for different choices of thermal radiation.
Solid lines denote the hybrid nanofluid and the dashed line denotes the nanofluid flow.
Increasing the thermal radiation upsurges the temperature of the fluid flow. Physically,
as the Nr term is upsurged, the mean absorption coefficient decays. This leads to an
enlargement in the radiative heat transfer rate.
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Figure 8 represents the concentration graph for various choices of Schmidt number.

Solid lines denote the hybrid nanofluid and the dashed line denotes the nanofluid flow.

Upsurging the Sc decays the concentration of the fluid flow. The physical significance

of the Sc is to provide a measure of how efficiently a solute (such as a pollutant or a

dissolved substance) is transported by diffusion compared to how efficiently it is
transported by the fluid's turbulence or viscous effects.

Figure 9 represents the concentration graph for various choices of chemical
reactions. Solid lines denote the hybrid nanofluid and the dashed line denotes the
nanofluid flow. Increasing the Cr* parameter decreases the concentration of the fluid
flow. The concentration of reactants significantly impacts the rate of a Cr*. Increasing
the concentration leads to a higher number of particles in a given volume, which
enhances the likelihood of collisions between reactant molecules. This increase in
collision frequency results in a higher rate of successful reactions.

Cr*=15, Nr=1,Ni=0.1,Pr=6.5

i Se=1.5,Nr=1,Ni=0.1, Pr=6.5

Figure 9: Graph of Cr* on concentration.
7 Conclusions

The current work aims to analyze the effect of Brinkman number and variable
MHD on Bi-viscous Bingham hybrid nanofluid flow across the penetrable sheet with
heat transfer. Molybdenum disulphide (MoS,) and Graphite oxide (GO) nanoparticles
are dispersed in sodium alginate (S4) to form a hybrid nanofluid. Using similarity
conversions, the governing nonlinear PDEs for momentum, temperature, and
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concentration are transformed into ODEs along with the boundary condition. The
results of the current work are obtained as follows:

e Upsurging the Brinkman number decays the momentum of the fluid
movement.

Upsurging the Cr* parameter decays the concentration of the fluid flow.
Upsurging the Bingham parameter decays the velocity of the liquid flow.
Enhancing the thermal radiation upsurges the temperature of the fluid flow.
Increasing the magnetic field decays the velocity of flow.

Upsurging the Sc decreases the concentration of the flow.

Upsurging the Da™ decays the momentum of the flow.

Increasing the Ni parameter upsurges the temperature of the flow.

The limiting case of the current study are as follows:

. Mlirgl {our results} —> {results of Wang [34]}.
5

A—>®

& .,6,—0
Nr—0

lim {our results} —> {results of Khan [36]}.
M0

A—>©

& .0, —0
Nr,Sc¢—0

lim  {our results} = {results of Crane [37]}.
M—0
A—©
.40
Nr,Ni—>0
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