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Abstract
This study examines the behavior of a micropolar fluid in a Rayleigh–Bénard configu-
ration under a time-varying gravitational force. A scaled fourth-order Lorenz model is
employed to describe weakly nonlinear convection. The model conserves energy and re-
tains all the essential characteristics of the classical Lorenz system. The scaled Rayleigh
number and the Ginzburg-Landau equation are derived using the Venezian method. The
graphs showing the variation of the correction Rayleigh number with the modulation fre-
quency for different parameter combinations are plotted, and it is found that the system
supports supercritical motion. Furthermore, an analytical expression for the time-average
Nusselt number is obtained and plotted for various values of the parameters, and it is
found that the presence of micropolar fluid generally promotes the heat transfer.
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1 Introduction
Over the past several decades, numerous research works have been conducted on the
Rayleigh-Bénard convection (RBC) due to its unique features and many industrial appli-
cations. The RBC was first experimentally studied by Bénard [1], later, the theoretical
explanation was given by Rayleigh [2]. Chadrasekar [3], in his book, gave a detailed
mathematical explanation for RBC, which motivated many researchers to study this field.

The RBC has been extensively investigated under a wide range of physical conditions,
including the inclusion of additional solutes, imposed magnetic fields, Coriolis effects,
and porous media. In the past few decades, among these extended configurations, mod-
ulated convection has gained significant attention as a means to explore the influence
of time-dependent forcing on convective behavior. In the classical RBC configuration,
the control parameters such as gravitational acceleration, thermal boundary conditions,
system geometry, and others are assumed to be constant in time. However, in many
natural and engineered systems, these parameters are not steady but instead vary peri-
odically or quasi-periodically with time. The introduction of such time-dependence is
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generally referred to as modulation in RBC. These forms of modulation influence not
only when convection begins, but also the system’s stability properties, the evolution of
its flow patterns, and the efficiency of heat transfer. In mathematical terms, the Boussi-
nesq framework then contains coefficients that vary periodically in time, converting the
stability question into one of parametric excitation. Floquet analysis is therefore the
natural means of identifying stability limits. Depending on the imposed modulation am-
plitude and frequency, the system may respond through resonant amplification, delayed
or accelerated destabilization, or subharmonic behaviour, each of which can shift the
critical Rayleigh number and reshape the emerging convection patterns. Within the RBC
literature, several forms of modulation have been examined:

1. Gravity modulation - where the effective gravitational acceleration is time - de-
pendent directly modifying the buoyancy term.

2. Temperature modulation - in which the imposed temperature or heat flux at the
boundaries varies periodically, altering the thermal forcing of the base state.

3. Internal-heating modulation, where the volumetric heat input fluctuates in time,
adding unsteady forcing within the fluid layer.

4. Multi-frequency or waveform-based modulation, involving multiple input frequen-
cies or non-sinusoidal shapes such as square or sawtooth waves, which produce
richer bifurcation behaviour.

Among these, gravity modulation stands out because it acts directly on the buoyancy
force, causing the Rayleigh number itself to oscillate. Such forcing can postpone or
hasten the onset of convection, switch the character of the instability between steady and
oscillatory modes, and significantly influence the heat-transport rate once convection
develops. Strong, low-frequency modulation typically creates pronounced resonance re-
gions, whereas high-frequency forcing tends to stabilize the conductive state by averaging
out the buoyancy variations. Some of the practical applications of gravity modulation
include the low-frequency vibrations have been used in attempts to control the shape
and position of the solid-liquid interface during Bridgman growth, which was studied
by Liu et al.[4], and Zharikov et al. [5] studied the effect of controlled gravity variation
in the crystal growth. Gresho and Sani [6] were the pioneers in investigating the effects
of time-dependent gravity in RBC. They demonstrated that the periodic modulation of
the gravitational field can either destabilize or stabilize a thermally stratified fluid layer
depending on the modulation frequency and amplitude. Earlier three-dimensional sim-
ulations by Biringen and Peltier [7], along with two-dimensional studies by Clever et al.
[8], showed that gravitational vibration can trigger oscillatory and subharmonic modes.
Using a Ginzburg–Landau equation (GLE), Siddheshwar [9] demonstrated that paramet-
ric resonance governs the amplitude dynamics of modulated convection. Subsequent
work by Siddheshwar and Kanchana [10] highlighted that the modulation waveform,
whether sinusoidal or piecewise linear, plays an important role in determining the onset
of instability, with non-sinusoidal forms generally providing greater stabilization. These
ideas were expanded further by Siddheshwar et al. [11] and Pranesh et al. [12], who
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examined multi-diffusive systems and reported that modulation can create stability “win-
dows" by simultaneously altering thermal and solutal gradients. More recent analyses by
Francis et al. [13], Kiran [14], Jakhar et al. [15], Bixapathi and Babu [16] and Nagaraj et
al. [17] considered a range of boundary conditions and found that rigid boundaries tend
to strengthen the stabilizing influence of modulation; they also showed that gravity mod-
ulation can significantly reduce both convective amplitudes and heat transfer in weakly
nonlinear regimes. Taken together, these studies underline the role of time-periodic
gravity as a viable control parameter for convection in Newtonian fluids.

In many engineering applications, the working medium contains dispersed micro-
scaled particles that modify its rheology and transport behaviour. Such suspensions
often depart from Newtonian characteristics because suspended particles may rotate and
translate independently of the bulk motion. To account for these microstructural effects,
Eringen [18] proposed the micropolar fluid (MPF) model, which augments classical con-
tinuum theory by introducing additional variables, such as the microrotation vector and
the micro-inertia tensor. These modifications lead to a non-symmetric stress tensor and
introduce couple stresses into the angular momentum balance. Łukaszewicz [19] later
offered a detailed mathematical development of MPFs and discussed their relevance in
porous media flows, lubrication, and particle-laden systems. Because the microstructure
can influence how long thermal energy remains in the fluid, MPFs have been widely
investigated in connection with convective stability and heat transfer. Although much
of the early work on convection focused on Newtonian fluids, the growing industrial
relevance of MPFs has motivated analyses using linear, energy, and weakly nonlinear
frameworks. The interaction between micropolar parmeters and gravity modulation
has been explored in several contexts, particularly in thermomagnetic and electrically
conducting fluids. Siddheshwar and Pranesh [20] investigated the combined effects
of time-dependent boundary temperature and gravity modulation in weakly conducting
magneto-convection, showing that the phase difference between the modulations can
either suppress or enhance instability. In a related study, Siddheshwar and Pranesh [21]
analysed electrically conducting micropolar fluids and found that the interplay between
spin inertia, magnetic effects, and oscillatory buoyancy can significantly modify the
critical Rayleigh number and alter the emerging flow patterns. Pranesh et al. [22] car-
ried this work further by conducting linear and weakly nonlinear analyses of micropolar
RBC under combined gravity modulation and electric fields, demonstrating that modu-
lation frequency and amplitude affect both the stability threshold and the resulting roll
amplitudes. Yekasi et al. [23] later included internal heat generation and reported that
microstructural effects can markedly delay the initiation of convection while reducing the
associated heat transport. Overall, these studies show that micropolar parameters com-
bined with gravity modulation leads to a rich set of parametric-resonance phenomena that
can be used to control convective stability in electrically conducting and particle-laden
fluids.

The goal of the present study is to develop the GLE governing the weakly nonlinear
behaviour of convection in a gravity-modulated MPF and to use this formulation to
evaluate heat transport through the time-averaged Nusselt number. In Section 2, the scaled
Lorenz model is considered from Siddheshwar et al. [24], and a perturbation scheme is
applied to obtain the expressions for the Rayleigh number and the GLE. The analytical
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expression for the Nusselt number is then obtained as a function of the gravity modulation
and micropolar parameters. Section 3 examines how the corrected Rayleigh number
varies with modulation frequency and whether the resulting motion is supercritical or
subcritical. Section 4 summarizes the main theoretical insights, emphasizing the effects
of gravity modulation and MPF parameters on and the associated heat transfer behaviour.

2 Mathematical Formulation
2.1 The scaled Lorenz Model

Siddheshwar et al. [24] formulated a hexa-modal-Lorenz model for a MPF in such a
way that it preserves all the essential characteristics of the third-order Lorenz model
originally proposed by Lorenz [25]. In the present problem, two additional assumptions
were introduced to the Lorenz model:

1. The gravitational acceleration is treated as a time-dependent function.

2. The micropolar parameter N5 is neglected due to its negligible influence on the
system dynamics, as supported by the findings of Siddheshwar et al. [24] and
Anirudh and Kumar [26].

By considering the above assumptions, we obtain the following fourth-order scaled
Lorenz model, given by:

dA
dτ

= Pr((1+ ε1δ sin(Ω∗
τ))C−A−N1B), (1)

dB
dτ

=− Pr
M1

(N1A+M2B), (2)

dC
dτ

= rA−C−AD, (3)

dD
dτ

=−bD+AC, (4)

where

K2 = π2(1+α2),τ = K2t,Pr = Pr(1+N1),b = 4π2

K2 ,r =
π2α2rRa

K6(1+N1)
,

M1 = N2K2(1+N1)
2,M2 = (1+N1)(N3K2 +2N1),M3 = K2(1+N1),

Ra =

(
K6

π2α2

)(
N1(N3K2+N1)+N3K2+2N1

N3K2+2N1

)
,Ω∗ = Ω

K2 .

 (5)

2.2 Linear Stability Analysis

The expression for the correction Rayleigh and the scaled Rayleigh number are obtained
using Venezian [27] approach, through which we study the onset of convection. The
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amplitudes A, B, C, and r̃ are expanded in the form:

A = A0 + ε1A1 + ε2
1 A2 + . . .

B = B0 + ε1B1 + ε2
1 B2 + . . .

C =C0 + ε1C1 + ε2
1C2 + . . .

r̃ = r̃0 + ε1r̃1 + ε2
1 r̃2 + . . .

 . (6)

Using equation (6) in the linearized version of the equations (1)-(4) and equating the
same powers of ε1 on both the side of the resulting equation, we get

O(ε0
1 ) : J1φ0 = [0,0,0]Tr, (7)

O(ε1
1 ) : J1φ1 = [R21,R22,R23]

Tr, (8)

O(ε2
1 ) : J1φ2 = [R31,R32,R33]

Tr, (9)

where

J1(τ) =


− 1

P̃r
d

dτ
−1 −N1 1

−N1 −M2
P̃r

d
dτ

−M2 0

1 0 − 1
r̃0

(
d

dτ
−1

)
 , (10)

φi =

Ai
Bi
Ci

 , i = 0,1,2, (11)

R21 =−δC0sin(Ω∗τ),R22 = 0,R23 =− r̃1A0

r̃0
,

R31 =−δC1sin(Ω∗τ),R32 = 0,R33 =
˜−r1A1 − r̃2A0

r̃0
,

 (12)

where overline on the C0 sin(Ω∗τ) and C1 sin(Ω∗τ) represents the time-average in[
0,

2π

Ω∗

]
.

Solving the equation (7), we get the following solutions:

φ0 =


−M2

N1
B0

B0

−M2r̃0

N1
B0

 . (13)

Using the conditions from the equation (13), the expression for the r̃0 is given by,

r̃0 =
M2 −N2

1
M2

. (14)
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Solving the equation (8), we get the following solutions:

φ1 =
δM2r̃0P̃r2sin(Ω∗τ)(Y5 − iY6)

Y 2
5 +Y 2

6


− (Y1 − iY2)

N1P̃r
B0

B0

− r̃0(Y3 + iY4)

N1P̃r
B0

 , (15)

where
Y1 = M2 P̃r,

Y2 = Ω∗ M1,

Y3 =
Y1 +Ω∗Y2

1+Ω∗2 ,

Y4 =
Y1 Ω∗−Y2

1+Ω∗2 ,

Y5 =−Ω∗Y2 +Y1 P̃r−N2
1 P̃r2 − r̃0 P̃rY3,

Y6 =−Ω∗Y1 −Y2 P̃r− r̃0 P̃rY4


. (16)

The summation form of the Fredholm-solvability condition is defined as:

3

∑
j=1

Ri jφ̂ = 0, i = 2,3. (17)

Substituing equations (12) and (15) in equation (17), we obtain,

r̃1 = 0 (18)

and

r̃2 =−δ 2r̃0P̃r(Y3Y5 +Y4Y6)

2(Y 2
5 +Y 2

6 )
. (19)

Thus the scaled Rayleigh number is given by,

r̃ =
M2 −N2

1
M2

− ε
2
1

(
δ 2r̃0P̃r(Y3Y5 +Y4Y6)

2(Y 2
5 +Y 2

6 )

)
. (20)

Now we proceed to derive the Ginzburg-Landau equation(GLE) in the next section.

2.3 Derivation of Ginzburg-Landau Equation
To derive the GLE, we again use the Venezian approach [27]. Let us consider the
following regular perturbations given by:

A = ε2A1 + ε2
2 A2 + ε3

2 A3 . . .

B = ε2B1 + ε2
2 B2 + ε3

2 B3 + . . .

C = ε2C1 + ε2
2C2 + ε3

2C3 + . . .

D = ε2D1 + ε2
2 D2 + ε3

2 D3 + . . .

r̃ = r̃0 + ε2r̃1 + ε2
2 r̃2 + . . .


, (21)
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where ε2 is a small amplitude and ε1=O(ε2
2 ).

Substituting equation (21) and assuming τ̃ = ε2
2 τ and ε1 = ε2

2 in the Lorenz model
(1)-(4) and considering the like powers of ε2, we get:

O(ε2) : J2ν1 = [0,0,0,0]Tr, (22)

O(ε2
2 ) : J2ν2 = [0,0,0,−A1C1]

Tr, (23)

O(ε2
2 ) : J2ν3 =

[
1

P̃r
dA1

dτ̃
−δC1sin(Ω̃τ̃),

M2
P̃r

dB1

dτ̃
,

1
r̃0

dC1

dτ̃
− r̃2A1

r̃0
+

A1D2

r̃0
,

dD1

dτ̃

−A1C2 −A2C1

]Tr

, (24)

where Ω̃ =
Ω∗

ε2
2

,

J2 =


−1 −N1 1 0
−N1 −M2 0 0

1 0 − 1
r̃0

0

0 0 0 −b

 , (25)

νi =


Ai
Bi
Ci
Di

 , i = 1,2,3. (26)

Using the solvability condition, we obtain the GLE of the form:

d
dτ̃

A1(τ̃) =

(
P2sin(Ω̃τ̃)+ r̃2

P1

)
A1(τ̃)−

P3

P1
A3

1(τ̃), (27)

where

P1 =
1

P̃r
+

N2
1 M1

M22P̃r
+ r̃0,

P2 = r̃0δ ,P3 =
r̃0

b

 (28)

The equation (27) is solved numerically with the initial condtion A1(0) = 1.

To investigate the effect of heat transfer, the expresion for the Nusselt number is
derived in the next section.
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2.4 Heat Transport: The Nusselt number
The Nusselt number, Nu(τ), is defined as:

Nu(τ̃) =

α

2
∫ 2

α
0 (1− z+T )dx

∣∣∣∣∣∣∣
z=0

α

2
∫ 2

α
0 (1− z)dx

∣∣∣∣∣∣∣
z=0

. (29)

Simplifying the equation (29) and obtaining the expression for D(τ̃) in terms of A1 by
using euqations (23) and (27), we obtain the expression for the Nusselt number given by,

Nu(τ̃) = 1+
2r̃0

r̃0 + ε2
2 r̃2

A2
1. (30)

The average Nusselt number, in the interval
[

0,
2π

Ω̃

]
is given by,

Nu(τ̃) =
Ω̃

2π

∫ 2π

Ω̃

0
Nu(τ̃)dτ̃. (31)

We next discuss the results and then finally the conclusion.

3 Results and Discussion
This study focuses on formulating the GLE corresponding to the RBC system subjected
to gravity modulation in a MPF framework. Furthermore, an expression for the time-
averaged Nusselt number is derived to quantify the heat transfer behavior of the system.
The physical significance of the MPF parameters involved in the analysis are as follows:
The coupling parameter N1 denotes the concentration of micron-sized suspended par-
ticles, where an increase in N1 enhances system stability, with its values confined to
0 ≤ N1 ≤ 0.9. The inertia parameter N2 accounts for the inertial effects of suspended
particles; higher values of N2 contribute to system stabilization, with 0 ≤ N2 ≤ O1. The
couple-stress parameter N3 measures the resistance to fluid motion arising from couple
stresses. An increase in N3 intensifies this resistance, elevating the temperature and
thereby promoting system instability. The parameter N3 extends the classical Newtonian
fluid framework by including the influence of couple stresses and body couples, and it
satisfies 0 ≤ N3 ≤ O2, where O1 and O2 are positive real constants.

By considering the accelerated gravity condition and neglecting the micropolar heat
conduction parameter N5, the governing equations, as formulated by Siddheshwar et
al. [24], the modified Lorenz model is expressed through equations (1)–(4). Further,
by employing the method proposed by Venezian [27], the scaled Rayleigh number r̃
obtained as given in equation (20), is obtained. Figures (1)–(5) illustrate the variation of
r̃2c with respect to the modulation frequency Ω∗ for different values of Pr, N1, N2, and
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Figure 1: The graph of r̃2 vs Ω∗ for δ = 1, Pr = 10, N1 = 0.1, N2 = 1.0,
and N3 = 1.0.

Figure 2: The graph of r̃2 vs Ω∗ for δ = 1, Pr = 10, N1 = 0.5, N2 = 1.0,
and N3 = 1.0.
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Figure 3: The graph of r̃2 vs Ω∗ for δ = 1, Pr = 10, N1 = 0.1, N2 = 1.0,
and N3 = 0.1.

Figure 4: The graph of r̃2 vs Ω∗ for δ = 1, Pr = 10, N1 = 0.1, N2 = 0.1,
and N3 = 1.0.

Page 78



P et al.

Figure 5: The graph of r̃2 vs Ω∗ for δ = 1, Pr = 15, N1 = 0.1, N2 = 1.0, and N3 = 1.0.

N3. The results clearly indicate that the MPF parameters promote supercritical motion
within the system.

Using the same analytical framework proposed by Venezian [27], the GLE for the
present system is presented in equation (27). The expression for the time-averaged
Nusselt number is given in equation (30), expressed in terms of the amplitude parameter
A1. The numerical value of A1 is obtained by solving equation (27) numerically with the
initial condition A1(0) = 1. By substituting the values of the Nu(τ) into equation (31)
and performing integration, the corresponding values of Nu, are determined for various
values of parameters and presented in the Figures (6)–(9). It is observed from figures
(6) and (7) that an increase in Pr and N1 leads to a rise in Nu, indicating enhanced heat
transfer with increasing Pr and N1. In contrast, figure (8) presents that increasing N2
hinders the heat transfer rate. The parameter N3 exhibits a dual behavior: for smaller
values of N3, Nu increases, while for higher values of N3, it remains nearly constant.

The gravity modulation in RBC systems with MPF has significant practical and the-
oretical applications in various areas of fluid dynamics and heat transfer. It serves as an
effective mechanism for controlling convective instabilities and enhancing or suppressing
heat transport in thermally driven flows. Such modulation techniques are particularly rel-
evant in aerospace and microgravity environments, where variations in artificial gravity
can affect thermal management and material processing. Additionally, gravity-modulated
convection models are employed in geophysical and astrophysical studies to simulate os-
cillatory buoyancy effects in planetary and stellar interiors. In engineering contexts,
controlled gravity modulation can be utilized in thermal control systems, chemical re-
actors, and crystal growth processes to optimize fluid mixing and improve uniformity in
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Figure 6: The graph of Nu vs Pr for N1 = 0.1, N2 = 1.0, N3 = 1.0,
δ = 1, Ω̃ = 10.

Figure 7: The graph of Nu vs N1 for Pr = 10, N2 = 1.0, N3 = 1.0,
δ = 1, Ω̃ = 10.
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Figure 8: The graph of Nu vs N2 for Pr = 10, N1 = 0.1, N3 = 1.0,
δ = 1, Ω̃ = 10.

Figure 9: The graph of Nu vs N3 for Pr = 10, N1 = 0.1, N2 = 1.0,
δ = 1, Ω̃ = 10.
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heat distribution. The present problem can be further extended by including additional
conditions, such as magnetic field, rotation, porous media, additional solutes and others.

4 Conclusion
The key findings of the study are:

1. The Ginzburg-Landau equation is derived for the Rayleigh-Bénard convection
system of a micropolar fluid with gravity modulation using the Venezian method.

2. The parameters Pr, N1, N2, and N3 are found to promote supercritical motion in
the system.

3. Increase in the parameters Pr and N1, advances the heat transfer.

4. Increase in the parameter N2 is to suppress the heat transfer.

5. The heat transfer initially increases with N3, followed by saturation at larger values,
indicating a dual effect of the parameter.
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