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Abstract

This paper presents a numerical investigation of forced convection heat transfer in a water-
based molybdenum disulphide (MoS,) nanofluid flowing through a three-dimensional
porous enclosure. The flow is governed by the non-Darcy regime, modeled using the
Darcy-Brinkman-Forchheimer (DBF) equation, while the energy equation is formulated
under the local thermal equilibrium assumption. The highly nonlinear coupled system
of equations is solved using a finite difference method (FDM) with a uniform grid, en-
hanced by the Alternating Direction Implicit (ADI) scheme for computational efficiency.
A systematic grid independence study is conducted to ensure solution accuracy. The
results quantify the enhancement of thermal performance, demonstrating that the Nus-
selt number increases significantly with higher nanoparticle volume fractions, greater
geometric complexity of the porous medium (shape factor), and increased inertial effects
(Forchheimer number). The study conclusively establishes that the use of water-MoS;
nanofluids in structured porous media is a highly effective strategy for augmenting heat
transfer, with promising applications in the design of advanced thermal management
systems.

Keywords: Darcy-Brinkman-Forchheimer Model; Water-MoS, Nanofluid; Porous
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1 Introduction

Modern energy systems, such as the Rankine cycles in thermal power plants and the
cooling of photovoltaic panels and power inverters, all depend on being able to efficiently
capture and reject heat. Liquid coolants are common in these roles, but their effective-
ness is limited by a basic property of the material: thermal conductivity. To address
this limitation, the traditional approach of using pure liquids is being replaced by the
progress of functionalised fluid composites. One of the most important new ideas in this
field is to mix ultrafine solid particles between 1 and 100 nanometers in size to make
a new type of heat transfer fluid that works much better. The choice of nanoparticles
as additives is mainly due to their much higher thermal conductivity compared to base
fluids, as shown in earlier research [[1]], [2],[3]. These nanoparticle suspensions, known
as "nanofluids” (a term introduced by Choi and Eastman [4]), represent an innovative
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category of engineered coolants. Research into nanofluids has grown a lot in the last few
years because they can be used in many different fields, including medicine and industry.
Due to this, they are widely thought to be new working fluids that can improve thermal
performance in many thermal and flow systems. Nanoliquids are considered potential
and innovative fluids that improve thermal performance in applications where efficient
heat transfer is important, such as heating and cooling systems with heat exchangers and
solar energy devices [35[]. The existing literature indicates that theoretical and numeri-
cal investigations of heat transfer in nanoliquids predominantly rely on three principal
modeling methodologies: the single-phase model introduced by Khanafer, Vafai, and
Lightstone [6][7]; the two-phase Buongiorno model[S§]]; subsequent adaptations of the
Buongiorno framework [9]] and also recent studies extended to the investigation of chaos
in convection using nanoliquids [10].

The transport of fluids within porous structures is a subject that has been studied for
quite some time. The Brinkman— Forchheimer equation has become one of the most
important models for understanding this type of phenomenon. The Darcy law was first
introduced by Darcy [[11] in the 19th century, but it was later extended to include other
physical effects, such as boundary interactions, viscous diffusion, and inertial contri-
butions [[12][13]]. Further studies conducted by Vafai and Tien [[14] and Rudraiah et
al. [15] improved the theoretical understanding of porous medium flows by including
the solid boundary and inertia effects inside the porous matrix. Their work used lo-
cal volume-averaging techniques to derive the governing equations near impermeable
surfaces, discussing important physical assumptions and limitations of the model. De-
spite these advancements in theory and experiments, solving the Brinkman—Forchheimer
equation itself is still a great challenge because of its nonlinearity property, especially for
two- and three-dimensional geometries (Bear and Bachmat [[16]). These computational
difficulties have motivated strong numerical methods development. Among them, cen-
tral difference approximation has been popularly used to discretize the governing partial
differential equations of fluid motion (Patankar [17]]). On another front, finite element
method applications to problems concerning porous media are very numerous since this
method allows high spatial accuracy when dealing with irregular geometries. Another
evolution related to numerical modeling is quasi-linearization techniques introduced by
Bellman and Kalaba [18]]. Nonlinear governing equations can be converted into a series
of linear subproblems under this approach so that efficient iterative computations can
be performed when combined with finite difference or finite element schemes; there-
fore such formulations will present practical ways toward finding converging solutions
which are stable computationally applicable on complex flow systems governed under
Darcy—Forchheimer—Brinkman frameworks. Sam et al. [19] have recently expanded
these numerical methods to more complex geometries. These studies highlight the flex-
ibility and increasing significance of modified finite difference and quasi-linearization
techniques in forecasting flow and heat transfer behavior in porous media systems that
hold practical engineering importance.

The current paper employs the FDM. As with the FEM, the FDM may also be
used ineffectively manage the geometry and boundary conditions. This method can be
coupled with the Alternate Direct Implicit (ADI) method, which provides stability and
efficiency when solving large systems iteratively (see Jain et al. [20]). The modified
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FDM that uses a quasi-linearization procedure can model flow equations more accurately
in a rectangular enclosure, thus increasing solution accuracy significantly in geometri-
cally complex domains. This study extends previous work on Brinkman—Forchheimer
flows of Newtonian fluids through an enclosure by introducing two straight boundaries
and one curved boundary. An application of modified FDM here is intended to enhance
understanding of the Brinkman-Forchheimer flow dynamics and assist in developing
accurate and efficient numerical models for fluid flow through porous media The present
study attempts to address existing research gaps regarding Brinkman-Forchheimer flows
within rectangular enclosures possessing both straight surfaces. The following points
encapsulate the novelty and importance of this work. Explores Brinkman—Forchheimer
flow of a water—MoS, nanofluid inside a rectangular porous enclosure. Uses the finite
difference method with ADI scheme, achieving high accuracy (10~#). Reports that Nus-
selt number increases with nanoparticle volume fraction, shape factor and Forchheimer
number; explains effects of porous resistance and inertial effects on flow and heat transfer
behaviour.

2 Nomenclature

Symbol  Description (SI Units) Symbol Description (SI Units)

(x,3,2) Cartesian coordinates (m) T Temperature (K)

h,k Step length (m) T, Wall temperature (K)

P Pressure (Pa) T Mean temperature (K)

w Velocity component (m/s) Pe Peclet number (dimensionless)

(X,Y,Z) Scaled coordinates (dimensionless) 6 Dimensionless temperature (dimensionless)
Hny Nanofluid dynamic viscosity (Pa-s) Nu Nusselt number (dimensionless)

Cp Ergun drag coefficient (dimensionless) ¢ Heat flux (W/m?)

K Permeability of porous medium (m?2) knf Nanofluid thermal conductivity (W/m-K)
UR Reference velocity (m/s) Y Aspect ratio (dimensionless)

A Brinkman number (dimensionless) n Number (dimensionless)

o? Porous parameter (dimensionless) m Mean (varies)

Re Reynolds number (dimensionless) w Wall (subscript)

F Forchheimer number (dimensionless)

K Shape factor (dimensionless)

Q Cross-sectional area (m2)

3 Mathematical formulation

This study examines the steady, fully developed flow of a nanofluid within a three-
dimensional porous rectangular enclosure. The domain, illustrated in Figure[I] has finite
dimensions a X b in the (x,y)-plane and is infinitely extended along the z-axis. Define
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Figure 1: Problem setup: geometry and boundary conditions for flow in a porous medium.

R={(x,9,2)|0<x<a,0<y<b,0<z< o}, the enclosure features impermeable walls
atx=0,x=a,y=0, and y = b. The momentum transport in the z-direction is governed
by the Darcy-Brinkman-Forchheimer (DBF) equation.
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The governing equations are normalized using the following dimensionless variables:

x y w pa

X=- Y=, W=— P= .

a’ b upR My FUR (2)

Substituting these dimensionless variables into Eq. (I} yields the non-dimensional
momentum equation:

IPW LW
S5z TV yz ~ MrOusW — CoRey, (W2 = —P", 3)
where P* = —3—? is the dimensionless pressure gradient. The governing parameters in

the equation are defined as follows:

= g (Aspect ratio), 4)
A= H ’/’f (Viscosity ratio), 5)
lJ’n f
2
0',12 = o (Inverse Darcy number), 6)
Re = P u/R a (Reynolds number), @)
My r
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with Cp, representing the Forchheimer drag coefficient.
Substituting the scaled velocity W = W /P* into Eq. results in:

P oW
0X? Y2

where the key dimensionless parameters are:

—sp W — FsuyW? = —A,p, (®)

F =CpRe P* (Forchheimer number), 9
Any
Snf = \/AuyOns (Porous medium shape factor). (10)

The parameters F and s,y are defined according to Hooman [21]], and the system is
subject to no-slip boundary conditions:

W =0 on 0Q. (1)

Under the local thermal equilibrium assumption, the steady-state energy equation, ne-
glecting heat generation, axial conduction, and thermal dispersion, is expressed in di-
mensional form as:

oT 9*T  J’T
The governing energy equation is non-dimensionalized using the variables from Eq. (2))
and the definition of dimensionless temperature, 6 = ((TT:TTW?) . This results in:
-~ 90 9’6 2’6
—Pe, W— = — -—, 13
W o7 = axa T Y oy (13)
where:
P*
Peyr = pnfc% (Nanofluid Péclet number), (14)
f
1,1
T, = / / TdY dX (Mean temperature). (15)
0 Jo
Heat transfer performance is characterized by the Nusselt number:
"
Nu=2 g (16)

knf(Tn —Ty) /0

The application of the first law of thermodynamics in dimensionless form yields:

26 hq" 1
A S—— 17)
0Z  knf(Tn—T,) Pe
Combining Egs. (T6) and (T7) gives:
d0  Nu
Peppo = —. 1
9z~ 2a (18)
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Where:

o= % (Ratio of thermal diffusivities). (19)
bf

The present formulation follows the scaling approach of Hooman [21]], but employs
a different normalization for the axial coordinate Z. In the fully developed regime,
the temperature field exhibits distinct dependencies: the dimensionless temperature 0
depends only on the transverse coordinates (X,Y ), while the mean temperature 7,, varies
solely with Z. This behavior is embedded within the nondimensionalized first law of
thermodynamics, where 6 remains locally dependent on Z in its differential form, 7;,
evolves axially, and the velocity field W contributes via its spatial variation in the integral
mean. Introducing the normalized temperature

0
0= Nu’ (20)

we substitute Eqs. (I8) and (20) into Eq. (I3) to obtain the governing equation for the
temperature field:

2’0 ,9°®0 W

AR T @n

The corresponding boundary conditions for ® are specified as:

90
X
00
oY

=0, ®|X:1 =0,
X=0 (22)

=0, ®|Y:1 =0,
Y=0

4 Numerical Scheme

The Brinkman-Forchheimer equation is nonlinear, so analytical solutions are impossible
for multi-dimensional cases. Numerical methods must be adopted instead. In light of a
two-dimensional domain that will be treated as rectangular for the purposes of the original
solution developed here, the finite difference method on a uniform mesh is very well-
suited. A central differencing scheme is adopted for high accuracy. For efficiency, the
solution will utilise the alternate direction implicit (ADI) scheme. Although it is a two-
dimensional problem, the ADI method decomposes it into manageable one-dimensional
stages, resulting in enhanced convergence and stability. The FDM-ADI system effectively
balances the accuracy in addressing complex heat transport problems within rectangular
domains.

The numerical solution utilizes central differencing for spatial derivatives. The ADI
scheme is implemented with implicit treatment in the x-direction and explicit treatment in
the y-direction. Given the one-way coupling from the momentum to the energy equation,
the flow field (Eq.[8) is solved first, independently of the temperature distribution. The
Laplacian terms are discretized using a standard central difference approximation on a
uniform grid with spacings AX and AY. The finite difference approximation for the
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Brinkman-Forchheimer equation at the nodal point Wl j» where X; = iAX and Y; = jAY,
is given by:

Wt Wt Wint s o Wor = 2We s+ Wi N -
i—1,j h2.1+ l+1,]+,}/2 i,j—1 kz,]‘i’ i,j+1 *SZVVI‘L/‘*FSWG?]':A. (23)

Using a finite difference approximation [20]] on equally spaced grid points, Eq. [§] is
discretized, incorporating the Laplacian, Darcy, and Forchheimer terms into the following
form:

(Wxx + 7 Wyy — "W + FW?) = aoW (X;,Y;) + 01 (WXin, , j) + 00W (Xiy -y )
+ W (Xiny j) + W (Xijn,). (24)

A Taylor series expansion is used to derive the coefficients «;, where Ay, h», h3, and
hy represent the step sizes in different spatial directions. This yields :

2 2y
2
on=s—-—>5—"7,
W h
1 Y
o = —, o = -,
1 h% 2 h%
1 Y
G=—, 4= . 25
3 Ex 4 2 (25)

To facilitate an iterative solution procedure, the nonlinear Forchheimer term is quasi-
linearized as follows:

2 ~ Wt
W W )
where (n) and (n+ 1) denote the current and subsequent iterations. The resulting linear
system is solved via the ADI method, where each directional sweep is handled by Thomas’

tridiagonal matrix algorithm.

5 Grid Independence Study

A grid independence study is conducted to ensure the accuracy of the numerical solutions
for Brinkman-Forchheimer heat transfer in rectangular enclosures. Starting from a coarse
mesh, the grid is systematically refined until key flow and thermal characteristics become
invariant with further increases in resolution across all aspect ratios studied.

Grid independence was assessed using four systematically refined meshes: a coarse
baseline (AX = 1/8), an intermediate grid (AX = 1/16), a fine grid (AX = 1/32) and
an ultra-fine grid (AX = 1/64), corresponding to refinements 1x, 2x, 4%, and 8x,
respectively. Initial computations on the coarse grid (AX = 1/8) captured the global flow
and thermal patterns but exhibited significant discretization errors, especially in boundary
layers where Brinkman and Forchheimer effects are dominant. Successively finer grids
(AX =1/16 to 1/64) employed a linear interpolation scheme to better resolve near-wall
gradients. This approach successfully minimized numerical artifacts and enhanced the
capture of critical boundary layer phenomena in all aspect ratios. At each refinement
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level, the complete numerical solution was recomputed. Particular attention was paid to
the resolution of the coupled viscous-inertial terms in the momentum equation and the
thermal diffusion in the energy equation. The nonlinear Forchheimer drag was carefully
handled via quasi-linearization to ensure stability throughout the refinement process.

Grid independence was established by analyzing the convergence of velocity profiles,
local Nusselt number distributions, and bulk flow parameters. The relative errors between
successive grid levels were quantified to select a final resolution that optimally balances
computational cost with numerical accuracy. This analysis confirmed that the chosen
grid adequately resolves all essential physics.

The computed velocity field W; ; was then used as input to solve the coupled boundary
value problem of Egs. (ZI))-(22)) for the temperature distribution @(X,Y). This thermal
solution employed a numerical procedure analogous to the velocity calculation, ensuring
methodological consistency.

Finally, with W (X,Y) and ©(X,Y) determined across the domain, the heat transfer
performance was quantified via the Nusselt number Nu. The physical temperature field
is given by 8(X,Y) = Nu®(X,Y). Applying the normalization condition

I
/ / OWdXdY = 1 @7
0 JoO

to the discrete solutions yields an explicit expression for the Nusselt number:

Nu= </01/01®de51¥>1. (28)

The integral in Eq. is evaluated numerically using the two-dimensional trape-
zoidal rule. This method consistently accounts for the dependence of Nu on the param-
eters s and F, maintaining numerical consistency with the underlying finite difference
scheme while ensuring efficient computation over the entire domain.

6 Analysis and Discussion

This paper investigates the Brinkman-Forchheimer flow in a rectangular cross-section
porous medium saturated with a water-based molybdenum disulphide (Mo0S5) nanoliquid.
The thermophysical properties of the base fluid (water) and the nanoparticles (MoS,)
used in this numerical study are documented in Table E} These values, measured at
300 K, are sourced from established experimental works (see, for example, Sandeep et
al. [22] and Siddheshwar and Veena [23]]).

The empirical correlations used to determine the effective thermophysical properties
of the water-MoS, nanoliquid are summarised in Table[2} where ¢ represents the volume
fraction of MoS; nanoparticles. The properties of the constituent materials required for
these models are provided in Table[T]

The effective properties of the nanoliquid are computed using the base fluid properties
from Table [T]and the correlation models from Table 2] Calculations are performed for
nanoparticle volume fractions of ¢ = 0.03 and 0.04, representing dilute concentrations
that ensure well-dispersed nanoparticles. This ensures that agglomeration (or cluster-
ing) is minimized, as such phenomena would reduce the available surface area of the
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nanoparticles for heat transfer, thereby defeating the purpose of enhancing the thermal
conductivity of the base fluid.

Table 1: Thermophysical properties of water and MoS5.

Quantity Water MoS,

Density (kg/m?) 997.1 5060

Thermal expansion coefficient (K~! x 10°) 21 2.8424
Specific heat (J/kg-K) 4179 397.21
Thermal conductivity (W/m-K) 0.613 904.4
Dynamic viscosity (kg/m-s) 0.00089 -

This section presents a detailed analysis of the heat transfer performance within a
porous medium saturated with a water-based molybdenum disulphide (MoS,) nanofluid.
The primary focus is to evaluate the impact of dilute concentrations of MoS, nanoparticles
on the Nusselt number (Nu). The analysis investigates two specific nanoparticle volume
fractions, ¢ = 0.03 and ¢ = 0.04, to quantify the effect of particle loading on heat transfer
enhancement.

Nanofluids, which are stable suspensions of nanoparticles in a base fluid like water,
are known to significantly improve thermal transport properties. In this study, the flow of
the water-MoS; suspension through the porous structure is laminar and fully developed.
The analysis examines the interplay between the nanoparticle volume fraction (¢) and
the Forchheimer number (F), which characterizes the inertial flow resistance within the
porous medium.

By systematically varying the nanoparticle concentration, this study aims to identify
the optimal dilution of MoS, for maximizing the Nusselt number, a direct indicator of
convective heat transfer efficiency. The results provide valuable insights into the role
of dilute nanoparticle suspensions in enhancing thermal performance, with potential
applications in advanced cooling systems and compact heat exchangers.

6.1 Thermal Characteristics of the Water-MoS, Mixture

The dispersion of Molybdenum Disulphide (MoS;) nanoparticles in water significantly
enhances the thermal conductivity of the base fluid, leading to improved heat transfer
performance within porous enclosures. This enhancement is strongly influenced by the
geometric complexity of the porous matrix and the concentration of nanoparticles.

Table E] displays the Nusselt number (Nu) for the water-MoS; mixture across a
range of shape factors (s) at two Forchheimer numbers, F = 1 and F = 2, and for two
nanoparticle volume fractions, ¢ = 0.03 and ¢ = 0.04. A consistent increase in Nu
is observed with increasing s, indicating that more complex pore geometries enhance
convective heat transfer. Furthermore, a higher nanoparticle concentration consistently
yields a higher Nu, underscoring the role of improved thermal conductivity in nanofluids.
The percentage increases shown are calculated relative to the baseline Nusselt number
at s = 1072 for the respective F and ¢ values, demonstrating the total enhancement
achieved across the range of the shape factor.
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Table 2: Models to determine the thermophysical properties of the nanoliquids.

Model Thermophysical Property
Knp _ _ K
kn; o (kbz +2) 2¢ ( kb/)

Hamilton—Crosser model kp; ( % + 2) T ( _ Ry )

kpi

(Hamilton & Crosser, 1962)

1
Brinkman model L (1— gy (¢ <0.06)

(Brinkman, 1952)

Mixture theory Eg Cplbl m

Other relations Cpy =

For instance, at F = 1 and ¢ = 0.03, Nu increases from 4.370 at s = 1072 to 6.3247
at s = 102, representing a significant cumulative enhancement of 44.69%. For the higher
concentration of ¢ = 0.04, the values rise from 5.5730 to 7.4914, marking a 34.37%
increase. A similar trend is evident at F = 2, where the Nusselt number at s = 102 shows
a 28.64% and 24.02% total increase for ¢ = 0.03 and ¢ = 0.04, respectively, from their
baseline values.

The relationship between the shape factor and heat transfer enhancement is further
illustrated in Figure [2} which plots Nu against log(s). The curves for both volume
fractions and Forchheimer numbers show a steady upward trend, confirming the positive
influence of both the nanoparticle concentration and the geometric complexity. The
cumulative percentage increases reveal a substantial overall improvement in thermal
performance, highlighting the effectiveness of the water-MoS; nanofluid in enhancing
heat transfer within porous media.

7 Conclusion

This study presents a comprehensive numerical analysis of forced convection heat transfer
for a water-Molybdenum Disulphide (MoS;) nanofluid within a three-dimensional porous
rectangular enclosure, based on the Darcy-Brinkman-Forchheimer model. The governing
equations were solved using a robust finite difference method (FDM) combined with the
Alternating Direction Implicit (ADI) scheme, ensuring computational efficiency and
stability. A systematic grid independence study was conducted to guarantee the accuracy
of the results. The investigation yielded the following principal conclusions:
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Figure 2: Effect of F and ¢ on Nu for water - MoS, mixture

Table 3: Table showing Nu values of water—-MoS; mixture for different s values at F = 1

and F = 2.
F=1 F=2

s Nugg—o03) Yoincrease Nugg_go4) % increase s Nugy—g03) oincrease Nugy_qo4) % increase
102 4.370 - 5.5730 - 102 6.8133 - 7.9710 -
1071 4.8587 11.81% 6.0530 8.62% 10-"  7.3020 7.18% 8.4506 6.02%
10° 5.3473 22.38% 6.5322 17.20% 10° 7.7907 14.34% 8.9300 12.03%
10! 5.8360 33.58% 7.0118 25.83% 10! 8.2793 21.51% 9.4098 18.05%
102 6.3247 44.69% 7.4914 34.37% 102 8.7680 28.64% 9.8890 24.02%

1. The addition of MoS, nanoparticles to the base fluid (water) significantly enhances

the thermal performance of the system. This is evidenced by a consistent and
substantial increase in the Nusselt number (Nu) with an increase in the nanoparticle
volume fraction (¢), across all values of the shape factor (s) and Forchheimer
number (F).

The shape factor (s) of the porous medium plays a critical role in heat transfer
augmentation. The results demonstrate a strong positive correlation between s and
the Nusselt number, indicating that more complex pore geometries significantly
intensify convective heat transfer. The percentage increase in Nu was calculated
cumulatively from a baseline, revealing enhancements of up to 44.69% for F = 1
and ¢ = 0.03 over the investigated range of s.

The Forchheimer number (F'), representing the inertial resistance within the porous
medium, also has a pronounced effect. Higher F' values consistently resulted in
higher Nusselt numbers for identical combinations of ¢ and s, highlighting the

Page 47



Vol.01, No.02

importance of accounting for inertial effects in high-velocity flow regimes within
porous media.

The numerical methodology, employing central differencing and quasi - lineariza-
tion of the nonlinear Forchheimer term, proved to be highly effective and stable.
The FDM-ADI framework provided an optimal balance between computational
cost and solution accuracy for the rectangular domain under consideration.

The synergistic combination of a water-MoS; nanofluid and a porous medium with
a high shape factor provides a highly effective means of enhancing heat transfer. The
findings of this work offer valuable insights for the design and optimization of thermal
systems, such as compact heat exchangers and advanced cooling devices, where managing
high heat fluxes is critical.

References

[1]

(2]

(3]

[9]

Masuda H., Ebata A., and Teramae K., “Alteration of thermal conductivity and
viscosity of liquid by dispersing ultra-fine particles. dispersion of al203, sio2 and
tio2 ultra-fine particles”, 1993.

Eastman J. A., Choi S. U. S., Li S., Yu W, and Thompson L., “Anomalously
increased effective thermal conductivities of ethylene glycol-based nanofluids

containing copper nanoparticles”, Applied physics letters, vol. 78, (6), pp. 718—
720, 2001.

Das S. K., Putra N. S. D., Thiesen P., and Roetzel W., “Temperature dependence

of thermal conductivity enhancement for nanofluids”, Journal of heat transfer,
vol. 125, (4), pp. 567-574, 2003.

Choi S. U. S., “Enhancing thermal conductivity of fluids with nanoparticles”, in
ASME international mechanical engineering congress and exposition, American
Society of Mechanical Engineers, vol. 17421, 1995, pp. 99-105.

Minkowycz W., Sparrow E. M., and Abraham J. P., Nanoparticle heat transfer and
fluid flow. CRC press, 2012, vol. 4.

Khanafer K., Vafai K., and Lightstone M., “Buoyancy-driven heat transfer en-
hancement in a two-dimensional enclosure utilizing nanofluids”, International
Journal of heat and mass transfer, vol. 46, (19), pp. 3639-3653, 2003.

Siddheshwar P. G. and Meenakshi N, “Amplitude equation and heat transport for
Rayleigh—-Bénard convection in newtonian liquids with nanoparticles”, Interna-
tional Journal of Applied and Computational Mathematics, vol. 3, (1), pp. 271-
292, 2017.

Buongiorno J., “Convective transport in nanofluids”, 2006.

Siddheshwar P. G., Kanchana C, Kakimoto Y, and Nakayama A., “Steady finite-
amplitude Rayleigh-Bénard convection in nanoliquids using a two-phase model:
Theoretical answer to the phenomenon of enhanced heat transfer”, Journal of Heat
Transfer, vol. 139, (1), p. 012402, 2017.

Page 48



Sam and Francis

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

(20]

(21]

[22]

(23]

Kanchana C and Laroze D., “Study of chaos in Rayleigh-Benard convection of
water-alumina nanofluid with heat source sink”, CU Journal of Non-Linear Fluid
Mechanics, vol. 1, (01), pp. 1-15, 2025.

Darcy H., Les fontaines publiques de la ville de Dijon: Exposition et application
des principes a suivre et des formules a employer dans les questions de distribution
d’eau: Ouvrage terminé par un appendice relatif aux fournitures d’eau de plusieurs
villes, au filtrage des eaux et a la fabrication des tuyaux de fonte, de plomb, de
tole et de bitume. Victor Dalmont, éditeur, 1856, vol. 2.

Brinkman H. C., “A calculation of the viscous force exerted by a flowing fluid
on a dense swarm of particles”, Flow, Turbulence and Combustion, vol. 1, (1),
pp- 27-34, 1949.

Forchheimer P., “Wasserbewegung”, Ver. Dtsch. Ing., vol. 45, pp. 1782-1788,
1901.

Vafai K. and Tien C. L., “Boundary and inertia effects on flow and heat transfer
in porous media”, International Journal of Heat and Mass Transfer, vol. 24, (2),
pp. 195-203, 1981.

Rudraiah N, Siddheshwar P. G., Pal D, and Vortmeyer D, “Non-darcy effects on
transient dispersion in porous media”, in ASME Proc. Nat. Heat Trans. Conf.,
Houston, Texas USA, vol. 96, 1988, pp. 623-635.

Bear J. and Bachmat Y., Introduction to modeling of transport phenomena in
porous media. Springer Science & Business Media, 2012, vol. 4.

Patankar S., Numerical heat transfer and fluid flow. CRC press, 2018.

Bellman R. E. and Kalaba R. E., “Quasilinearization and nonlinear boundary-value
problems”, (No Title), 1965.

SamN. E.,Nagouda S. S., and Siddheshwar P. G., “Darcy-Forchheimer—Brinkman
flow of a newtonian fluid through an enclosure with two straight boundaries
and one curved boundary”, International Journal of Applied and Computational
Mathematics, vol. 11, (5), p. 195, 2025.

Jain M. K., Iyengar S. R. K., and Jain R. K., Numerical methods: problems and
solutions. New Age International, 2007.

Hooman K., “A perturbation solution for forced convection in a porous-saturated
duct”, Journal of computational and applied mathematics, vol. 211, (1), pp. 57—
66, 2008.

Sandeep N, Sharma R. P., and Ferdows M., “Enhanced heat transfer in unsteady
magnetohydrodynamic nanofluid flow embedded with aluminum alloy nanoparti-
cles”, Journal of Molecular Liquids, vol. 234, pp. 437443, 2017.

Siddheshwar P. G. and Veena B. N., “Study of Brinkman—Bénard nanofluid con-
vection with idealistic and realistic boundary conditions and by considering the
effects of shape of nanoparticles”, Heat Transfer, vol. 50, (4), pp. 3948-3976,
2021.

Page 49



Vol.01, No.02

Acknowledgements

The authors would like to thank the Department of Mathematics, Christ University, for
providing the necessary computational facilities and support.

Data Availability

The data that support the findings of this study are available from the corresponding
author upon request.

Page 50



	 Introduction
	Nomenclature
	 Mathematical formulation
	Numerical Scheme
	Grid Independence Study
	Analysis and Discussion
	Thermal Characteristics of the Water-MoS2 Mixture

	Conclusion

