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Abstract
The paper investigates both linear and non-linear regimes of convection in nanoliquids
having palm-oil as the base with internal-heat-generation (I H G ) dominating buoy-
ancy. Palm oil is used with well-dispersed nanoparticles of either copper or titanium
dioxide. We adopt a formulation that gives an I H G - based Rayleigh number as an
eigenvalue. The effective thermophysical properties are evaluated using mixture theory
and phenomenological models, leading to a modified Rayleigh number that involves a
dimensionless factor, F, representing the influence of nanoparticles loading. The Maclau-
rin series expansion method is used in the linear stability analysis to represent the eigen
function as a power series. For the nonlinear regime, the Galerkin-Fourier method helped
in deriving the generalized-Lorenz-model and thereby the Stuart–Landau equation is ar-
rived at to describe the amplitude evolution near the convection threshold. The approach
enhances understanding of how internal heat generation affects convective and chaotic
flows in nanoliquids and offers valuable guidance for optimizing thermal management
and energy system performance. Palm oil-based nanoliquids containing either copper
or titanium dioxide nanoparticles have contrasting thermal and chemical properties and
lead to distinct enhancements in heat transfer performance, stability, and response to
I H G . Chaotic motion is shown to be impossible in the considered palm-oil-based
nanoliquids due to them being high Prandtl number liquids. The results of the problem
have immense applications in thermal energy problems involving coolants and also in
thermal-storage devices.

Keywords: Internal heat generation; Convection; Semi-analytical method; Linear
stability; Nonlinear stability; Boundary eigenvalue problem.

1 Introduction
The study of internally heated convection has long been a central theme in fluid me-
chanics due to its broad relevance to geophysical, astrophysical, and industrial systems.
The inital experimental work of Tritton and Zarraga [1] revealed that when a fluid
layer of infinite horizontal extent is subjected to I H G , cellular convection structures
develop in a manner similar to classical Bénard type convection. Their observations
also showed the practical significance of such flows, including their possible connec-
tion to convection processes within the Earth’s mantle. Subsequently based on these
findings, Roberts [2] presented a theoretical framework for convection in a uniformly
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heated layer and derived the corresponding critical-Rayleigh-number and wave-number
at the onset-of-convection. Using a numerical method, Thirlby [3] later confirmed these
results and demonstrated how the Rayleigh and Prandtl numbers affect the flow morphol-
ogy. Schwiderski [4], Peckover and Hutchinson [5], and Gasser and Kazimi [6] further
extended the above theoretical studies by studying the stability behavior, influence of
boundaries and the impact of I H G .

The classical Bénard problem has been studied with modifications introduced through
the inclusion of additional physical effects. The work of Hamabata and Takashima [7]
studied the influence of rotation, while Tasaka and Takeda [8], and Kuznetsov and Nield
[9] investigated non-uniform I H G . Their analysis highlighted that internal heating
interacts strongly with mechanisms such as rotation, which can postpone the onset of
convection depending on system parameters. Modern high Rayleigh number simulations
by Goluskin and van der Poel [10], and Wang et al.[11] have provided scaling relationships
that connect mean temperature, convective stability, and heat transport. Deepika et al.[12]
extended such a study by considering convection in a Darcy–Brinkman-porous-medium
along with effects of throughflow and I H G .

In recent years, interest has increasingly shifted from conventional fluids to nanoflu-
ids, which are fluids that contain nanosized particles uniformly dispersed within a base
liquid to enhance thermal performance. Efficient cooling plays an important role in a
wide range of mechanical and electronic applications. Earlier attempts to improve ther-
mal behavior through the addition of micron-sized solid particles yielded some benefits
but also introduced challenges such as sedimentation and clogging. Use of nanopar-
ticles, with their much smaller size and higher surface area, addressed the drawbacks
by offering improved suspension stability and superior heat transfer capability. When
nanoparticles are dispersed in a base fluid, they modify its key thermophysical properties
such as viscosity, density, and thermal conductivity which in turn influence its convective
behavior and overall heat transfer performance.

Choi [13] introduced nanoliquids which was obtained by dispersing nanoscale parti-
cles in a base liquid to enhance heat transfer. Eastman et al.[14] experimentally observed
a notable rise in the thermal-conductivity of ethylene-glycol-based nanoliquids, igniting
substantial research interest. Later, Das et al.[15] demonstrated the strong temperature-
dependence of this enhancement, and Buongiorno [16] formulated a two-phase transport
model incorporating Brownian diffusion and thermophoresis as principal nanoparticle
mechanisms. These works helped the practical use of nanofluids in engineering, giving
us the mechanism for their adoption in areas such as solar energy harvesting, cooling of
microelectronic devices, and other thermal management applications.

The modelling of Rayleigh–Bénard-Convection (RBC ) in nanoliquids is carried out
using the Khanafer–Vafai–Lightstone (K V L ) single-phase model [17] or the Buon-
giorno two-phase model [16]. Siddheshwar et al. ([18], [19]) generalised the Buongiorno
model [16] to include thermophysical properties of the base liquid and nanoparticles and
verified the thermdynamic validity of both formulations and demonstrated their ability to
describe heat transfer enhancement in nanoliquid convection. Kanchana and Laroze[20]
used a generalized-Lorenz-model to analyze water–alumina nanoliquids containing in-
ternal heat sources and sinks. Their analysis revealed that nanoparticles’ addition has a
stabilizing effect on the convective process, even when considering chaotic motion.
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Figure 1: Physical configuration of the problem.

The current study extends this body of work by exploring I H G in nanoliquids
having palm-oil as the base and with either copper (Cu) or titanium dioxide (TiO2)
nanoparticles. Palm oil has gained attention as a sustainable base fluid because of its
suitable viscosity and good thermal stability. When dispersed with Cu or TiO2 nanopar-
ticles, the overall thermal conductivity of palm oil increases significantly, making it a
promising option as an environmentally friendly nanoliquid for heat transfer applications.
The mathematical framework employs the Maclaurin series-based eigenvalue estimation
technique discussed in the works of [21], [22], [23], [24]. The study on I H G con-
vection remains largely unexplored, particularly for palm oil-based Cu/TiO2 nanoliquids
for the case of rigid–rigid boundary condition. This investigation aims to fill that gap
and provide new insights into the stability characteristics of thermally driven nanofluid
systems.

2 Mathematical Formulation
We consider a fluid layer of infinite horizontal extent and of thickness d, whose lower
and upper bounding planes are at z = 0 and z = d, respectively. The lower-boundary
is rigid-adiabatic, while the upper-one is free-isothermal. The fluid-density is ρnl , the
dynamic viscosity is µnl , the thermal-diffusivity is χnl , fluid-velocity is q⃗ = (u,0,w) and
the coefficient-of-thermal-expansion is βnl . The subscript nl denotes nanoliquid and
np denotes nanoparticle. The internal-heating is evenly distributed throughout the fluid
layer, resulting in an I H G term, Q, in the equation of conservation-of-energy.

In formulating the governing-equations, we have made use of the Boussinesq-
approximation as a result of which density remains constant except where it is multiplied
by gravity. The governing-equations are as follows:

Conservation-of-Mass:

∇ · q⃗ = 0, (1)

Conservation-of-Linear- Momentum:

ρnl

[
∂ q⃗
∂ t

+(⃗q ·∇)⃗q
]
=−∇p+µnl∇

2q⃗−ρnl [1−βnl(T −T0)]gk, (2)
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Conservation-of-Energy: (
∂

∂ t
+(⃗q ·∇)−χnl∇

2
)

T = Q, (3)

Phenomenological-Laws:

µnl

µbl
=

1
(1−α)2.5 ,

knl

kbl
=

(
knp
kbl

+2
)
−2α

(
1− knp

kbl

)
(

knp
kbl

+2
)
+α

(
1− knp

kbl

)


, (4)

Mixture theory:

χbl =
kbl

(ρCp)bl
, χnl =

knl

(ρCp)nl
,

ρnl

ρbl
= (1−α)+α

ρnp

ρbl
,

(ρCp)nl = (1−α)+α
(ρCp)np

(ρCp)bl
,

(ρβ )nl = (1−α)+α
(ρβ )np

(ρβ )bl


. (5)

Considering Eqs. (1), (2) and (3) in component-form, we get[
∂

∂x
∂

∂y

][u
v

]
= 0, (6)


ρnl

(
∂

∂ t
+u

∂

∂x
+w

∂

∂ z

)
−µnl∇

2 0 0

0 ρnl

(
∂

∂ t
+u

∂

∂x
+w

∂

∂ z

)
−µnl∇

2 −ρnlβnl

0 0
∂

∂ t
+u

∂

∂x
+w

∂

∂ z
−χnl∇

2




u

w

T



=


−∂ p

∂x

−∂ p
∂ z
−ρnl(1+βnlT0)

Q


(7)

Using Eq. (6) and eliminating p between the first two equations of Eq. (7), we get
the resulting-equation as:[

ρnl

(
∂

∂ t +u ∂

∂x +w ∂

∂ z

)
−µnl∇

2 (ρβ )nlg ∂

∂x

][
ζ

T

]
= 0, (8)
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where ζ =
[

∂

∂ z − ∂

∂x

][u
w

]
. The motion-less basic-state is governed by:

(ub,wb) = (0,0),

Tb(z) =
1− z2

2

 . (9)

To make a stability analysis, we superimpose perturbations on the basic-state as:

(u,w) = (ub +u′,wb +w′), T = Tb(z)+T ′, (10)

where prime indicates perturbed quantity. We reduce the number of dependent variables
further on by introducing the stream function, ψ , as:

u′ =−∂ψ ′

∂ z
and w′ =

∂ψ ′

∂x
. (11)

Eq.(1) is satisfied in perturbed state also. We now adopt the following scaling which
helps us in studying I H G convection:

(X ,Z) =
( x

d
,

z
d

)
, τ =

t
d2/χbl

,Ψ =
ψ ′

χbl
, Θ =

T ′

Qd2/χbl
, (12)

we obtain the dimensionless form of the Eqs.(7) and (8) in terms of the stream function
are:

 1
Prnl

(
∂

∂τ
+ ∂Ψ

∂X
∂

∂Z −
∂Ψ

∂Z
∂

∂X

)
∇2−a1∇4 −Ranla3

1
∂

∂X

−Z ∂

∂X
∂

∂τ
+ 1

Prnl

(
∂Ψ

∂X
∂

∂Z −
∂Ψ

∂Z
∂

∂X

)
−a1∇2

[Ψ

Θ

]
=

[
0
0

]
(13)

where

Prnl =
µnl

ρnl χbl
is the nanoliquid Prandtl number,

Ra =
(ρβ )nlgQd5

(µχ2)nl
is the nanoliquid Rayleigh number,

and X is the non-dimensional horizontal coordinate, Z is the non-dimensional vertical
coordinate, τ is the non-dimensional time, Ψ is the non-dimensional stream function, Θ

is non-dimensional temperature, a1 =
χnl
χbl and ∇2 is the non- dimensional Laplacian.

Eq. (13) is solved subject to ∂

∂X 0 0
∂ 2

∂X∂Z 0 0
0 0 ∂

∂Z


Ψ

Ψ

Θ


z=0

=

0
0
0

 , (14)
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 ∂

∂X 0 0
∂ 2

∂X∂Z 0 0
0 0 1

Ψ

Ψ

Θ


z=1

=

0
0
0

 . (15)

Eqs. (14) and (15) pertain to rigid-adiabatic and rigid-isothermal boundaries respectively.
In the next section, we make a linear-stability-analysis to study the onset of pre-chaotic
motion.

2.1 Linear Stability Analysis
We consider the normal mode solution:[

Ψ

Θ

]
=

[
sin(aX) F(Z)
cos(aX) G(Z)

]
, (16)

where F(Z) and G(Z) are amplitudes of the perturbations of the Ψ and Θ and a is the
wave-number. Substituting Eq. (16) in Eq. (13), we arrive at the following equations:[

a1(D2−a2)2 −a3
1a2Ranl

Z a1(D2−a2)

][
F
G

]
=

[
0
0

]
(17)

where D = d
dZ . The boundary-condition to solve Eq. (17) can be got by substituting

Eq. (16) in Eqs. (14)-(15) to get:

1 0 0
0 D 0
0 0 D




F

F

G


z=0

=

0

0

0

 (18a)

1 0 0
0 D 0
0 0 1




F

F

G


z=1

=

0

0

0

 (18b)

The critical-value of the eigenvalue, Ranl , and the wave-number, a, was reported by
Roberts[2] who found them to be Ranlc = 2772.28 and ac = 2.62. The quantities Ranlc
and ac obtained here are the same as that obtained by Roberts [2]. We use these values
for Ranl and a in our subsequent calculations. Thus, having got Ranlc and ac, we will
have to deal with an initial value problem now to obtain the normal modes as a power
series. This procedure is explained further on.

2.2 Maclaurin series (MS) based solution: Semi-analytical approach
To solve Eq. (17) with the Eqs. (18a)-(18b), we need to convert the boundary-value-
problem (BV P) with a known eigen-value to an initial-value-problem (I V P), with
Ranl and a replaced by 2272.28 and 2.62 respectively. Next, we replace the right-end
boundary-condition (RE BC ) in Eq. (18b) with the unknown initial conditions:

d2F
dZ2 (0) = γ̃,

d3F
dZ3 (0) = α̃ and G(0) = β̃ . (19)

Page 56



Siddheshwar

There are three RE BC to determine three unknowns γ̃ , α̃ and β̃ . In order to solve
this consistent system with three given-initial conditions, Eq. (18a), and three assumed
initial conditions of Eq. (19) (used in place of Eq. (18b)). We next consider the series
solution for the Eq. (17) in the form:

F
(

Z; γ̃, α̃, β̃
)
=

∞

∑
n=0

cn Zn,

G
(

Z; γ̃, α̃, β̃
)
=

∞

∑
n=0

dn Zn

 . (20)

The first few ci’s and di’s can be obtained from Eqs. (18a) and (19) as:

c0 = 0, c1 = 0, c2 = γ̃/2, c3 = α̃/6, d0 = 0, d1 = β̃ . (21)

To obtain the remaining coefficients, we substitute Eq. (20) in Eq. (17) and get the
recurrence relations:

ck+4 =
2a2

c(k+2)(k+1)ck+2−a4
cck +a2

1a2
cRanlc dk

(k+1)(k+2)(k+3)(k+4)
,

dk+2 =

2a2
cdk−

k

∑
l=0

δl1 ck−1

a1(k+2)(k+1)


k = 0(1)∞. (22)

The above procedure yields:

F
(

Z; γ̃, α̃, β̃
)
=

γ̃

2
Z2 +

α̃

6
Z3 +

(
2a2γ̃ +a2

1a2
cRanlc β̃

24

)
Z4 +

2a2
c γ̃

120
Z5

+

(
4a4

c +3a2
1a2

cRanlc β̃ −a4
c γ̃

720

)
Z6 + . . . 25 terms, (23)

G
(

Z; γ̃, α̃, β̃
)
= β̃ +

β̃a2
c

2
Z2 +

(
a4

c β̃

)
24

Z4− 1
20

Z5 +

(
−4α̃ +a6

c β̃

)
720

Z6 + ... 25 terms.
(24)

Now, using Eqs. (23) and (24) in the unused RE BC condition of Eq. (18b), we get
a system of three non-linear algebraic equations in α̃ , β̃ and γ̃ which can be solved
by using the three-variable Newton-Raphson method. The convergence of the series
solution presented in Eqs. (23) and (24) depends on the number of terms included. It
is found that at least 25 terms are necessary to achieve convergence with three-digit-
numerical accuracy. Increasing the number of terms beyond 25 terms yields the same
three-digit-accurate values of α̃ , β̃ and γ̃ . In the next section, we present a procedure to
obtain the expression of the eigenfunction for the X−independent convective mode.
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2.3 Derivation of the eigenfunction, H(Z), for the convective mode
The eigenfunction in this case is X−independent thereby meaning it is a function of Z
only. The expression of H(Z) can be obtained by solving the following equation:

d2H
dZ2 =

∂ (Ψ,Θ)

∂ (X ,Z)
. (25)

This equation essentially means that the eigenfunction is got by equating the transverse
diffusion and convective terms. We mention here that H being a function of Z only,
the right-hand-side of Eq. (25) should also be a function of Z only. Keeping this in
mind, we now substitute Eq. (16) in Eq. (25). For the right-hand-side of Eq. (25) to be
independent of X , we need to have the following enforcement:

F ′(Z)G(Z) = F(Z)G′(Z). (26)

The validity of Eq. (26) for all Z was confirmed through computation. Hence Eq. (25)
now yields

d2H
dZ2 = γ̃

2acF ′(Z)G(Z). (27)

Eq. (27) is next solved for H(Z) subject to:

dH
dZ

(0) = 0,H(1) = 0. (28)

Eq. (28) is, in fact, the H−version of the G boundary condition in Eq. (17). The
particular solution of Eq. (27) subject to Eq. (28) is

H(Z) = γ̃
2ac [M(Z)+N(0)(1−Z)−M(1)] , (29)

where M(Z) =
∫

Z

[∫
F(η)G

′
(η)dη

]
dZ and N(Z) =

∫
Z

F(η)G
′
(η)dZ. We next con-

firm whether H(Z) is the needed function by checking its orthogonality with F(Z) and
G(Z). It can easily be verified that the following orthogonality or otherwise is true:

∫ 1

0
F(η)H(η)dη = 0,∫ 1

0
G′(η)H(η)dη = 0,∫ 1

0
H2(η)dη ̸= 0


. (30)

In the next section, using H(Z)we construct a minimal representation of Fourier-Galerkin
series to perform a weakly-nonlinear-stability-analysis of the I H G enabled convection
problem and this results in a new-Lorenz-model that structurally resembles the classical
one of RBC .
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2.4 Lorenz model for I H G driven convection
In order to derive the Lorenz model, we consider the minimal Galerkin-Fourier-
representation for Ψ and Θ as follows

Ψ(X ,Z,τ) =
ac

m

√
I1I2

I3I4
A (τ)sin(acX)F(Z), (31)

Θ(X ,Z,τ) =
ac Ranl Q2

mQ1

√
I1I2

I3I4
B(τ)cos(acX)G(Z)− ac Ranl Q2I1

m Q1I2
C (τ)H(Z),

(32)
where

I1 =
∫ 1

0
FGH ′ dZ, I2 =

∫ 1

0
F ′GH dZ, I3 =

∫ 1

0
G2 dZ, I4 =−

∫ 1

0
H2 dZ,

I5 =
∫ 1

0
GG′′ dZ, I6 =

∫ 1

0
HH ′′ dZ, m =

I5−a2
cI3

I3
,

Q1 =

∫ 1
0 FF

′′′′
dZ−2a2

c
∫ 1

0 FF ′′ dZ +a4
c
∫ 1

0 F2 dZ

a2
c
∫ 1

0 F2 dZ−
∫ 1

0 FF ′′′′ dZ
,

Q2 =
ac
∫ 1

0 FGdZ

a2
c
∫ 1

0 F2 dZ−
∫ 1

0 FF ′′′′ dZ



,

(33)
and the eigenfunctions F(Z), G(Z) and H(Z) are given by Eqs. (23), (24) and (29)
respectively. Substituting Eqs. (31) and (32) into Eqs. (13) and taking projection of the
resulting equations on the three eigenfunctions, we arrive at the scaled Lorenz model for
the I H G -driven-convection in the form

dA ∗

dτ∗
= Pr∗ [B∗−A ∗] , (34)

dB∗

dτ∗
= r A ∗−A ∗C ∗−B∗, (35)

dC ∗

dτ∗
=−b∗C ∗+A ∗B∗, (36)

where (A ∗,B∗,C ∗,τ∗) = (A ,B,C ,τ)
m , Pr∗ = Pr Q1, r = Ranl

Ranlc
and b∗ = I6

I4
.

Eqs. (34) - (36) exhibit the same properties as that of the classical Lorenz model [25]as
it is structurally similar to it.
These properties are

1. In phase-space (A ∗,B∗,C ∗), the C ∗- axis serves as the axis of symmetry since
the Lorenz model is invariant under the transformation

(A ∗, B∗, C ∗)←→ (−A ∗, −B∗, C ∗).
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2. The system is dissipative in nature since

∂ ˙A ∗

∂A ∗ +
∂Ḃ∗

∂B∗
+

∂ Ċ ∗

∂C ∗
=−(Pr∗+1+b∗)< 0,

where an overdot indicates time derivative.

3. The critical points of the system are given by

O = (0,0,0), C+ =
(√

(r−1)b∗,
√
(r−1)b∗,r−1

)
,

C− =
(
−
√

(r−1)b∗,−
√
(r−1)b∗,r−1

)
To determine the onset of chaos, we have to find the Hopf Rayleigh number, rH . On
comparing our scaled generalised Lorenz model for the I H G driven convection
with the classical one[25], we can write the expression for rH as

rH = Pr∗
(

Pr∗+b∗+3
Pr∗−b∗−1

)
. (37)

We next derive the Stuart–Landau equation from Eqs. (34)-(36). From Eqs.(35) and (36),
B∗ and C ∗ can be obtained in terms of A ∗ as follows:

B∗(τ∗) = A ∗+
1

Pr∗
dA ∗

dτ∗
, (38)

C ∗(τ∗) =
1

A ∗

[
(r−1)A ∗−

( 1
Pr∗

+1
)dA ∗

dτ∗
− 1

Pr∗
d2A ∗

dτ∗2

]
. (39)

Substituting Eqs.(38) and (39) in Eq.(36) and neglecting d3A ∗

dτ∗3
, d2A ∗

dτ∗2
dA ∗
dτ∗ , and A ∗ d2A ∗

dτ∗2
,

we get the Stuart–Landau equation in the form

dA ∗

dτ∗
=

Pr∗

b∗(1+Pr∗)

[
(r−1)b∗−A ∗2

]
A ∗. (40)

Equation (40) is a Bernoulli equation in A and it can be solved using A (0) = 1, and its
particular solution is then given by

A ∗(τ∗) =

[
1

(r−1)b∗
+

(
1− 1

(r−1)b∗

)
e−

2(r−1)
1+Pr∗ τ∗

]− 1
2
. (41)
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2.5 Estimate of the Nusselt Number
To estimate the heat-transport, we use the thermal- Nusselt-number, Nunl ,definition:

Nunl(τ
∗) =

∫ 2π

0

(
kbl

dTb
dZ + knl

∂Θ

∂Z

)
dX

kbl
∫ 2π

0
dTb
dZ dX


Z=0

. (42)

Substituting the non-dimensional form of Eq.(9) and Eq.(23) in Eq.(42) and completing
the integration, we get

Nunl(τ
∗) = 1+

knl

kbl
H ′′(0)C ∗(τ∗), (43)

where C ∗(τ∗) in terms of A ∗(τ∗) is given by Eq.(39). We now proceed to discuss the
results.

3 Results and discussion
This work examines both linear and nonlinear aspects of stability in nanoliquid convection
effected by I H G . Palm oil based nanofluids with Cu or TiO2 are analyzed using
thermophysical properties based on mixture theory and phenomenological relations.
The effects of nanoparticle concentration, nanoparticle type, and key properties such as
thermal conductivity, specific heat, and thermal expansion are studied to understand their
role on the onset of regular convection, heat transfer and chaotic motion. The findings
are compared using variations in the Nusselt and modified Rayleigh numbers for two
nanoliquid combinations. In the current study we have used Palm oil as a baseliquid.
Palm oil serves as an effective and sustainable base liquid for nanoliquid applications due
to its favorable thermophysical and environmental characteristics. As a naturally derived
and biodegradable fluid, palm oil gives us an eco-friendly option compared to synthetic
or mineral oils. It has a good thermal stability and high viscosity which makes it suitable
for use at higher temperatures while maintaining reliability. One of the real advantages of
palm oil is its versatility, it can pair effectively with a wide range of nanoparticles to form
stable nanoliquids that significantly boost thermal conductivity. Added to that is its low
cost and wide spread availability, and sustainable option for heat transfer applications.

In this study, the nanoliquid Rayleigh number is determined using effective thermo-
physical properties based on mixture theory, phenomenological models, and experimen-
tal data from previous works. Tables 1 and 2 list the properties of the Palm-oil and
the two nanoparticles, Cu and TiO2, and these documented values used to calculate the
modified Rayleigh number, and thermophysical properties of the two nanoliquids under
consideration are documented in Table 3. Next using the relations (4)–(5), a dimen-
sionless factor F was introduced to rearrange the expression of the Rayleigh number to
ascertain the influence of nanoparticle concentration and fluid characteristics on onset
of regular convection. The factor F = (1−α)2.5(ρβ )nl

a1ρblβbl
governs the critical threshold for

the onset of regular (pre-chaotic) convection. Values of F , for Palm-oil-Cu and Palm-
oil-TiO2 nanoliquids at different volume fractions are given in Table 4. The factor F
helps in understanding the advanced onset of pre-chaotic-motion due to the presence
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of nanoparticles. Values of F determine whether onset is advanced or delayed. At a
nanoparticle concentration of 0.02, the Palm-oil-Cu nanoliquid exhibits a slightly higher
F value (0.9011) compared to that of Palm-oil-TiO2 (0.8978), suggesting an earlier onset
of convection in the case of Palm-oil-Cu. With an increase in concentration to 0.03
and 0.04, both nanoliquids show a steady decrease in F . For Palm-oil-Cu, F decreases
from 0.9011 to 0.8115, while for Palm-oil-TiO2, it drops from 0.8978 to 0.8056. This
reduction is mainly because of the rise in viscosity and increased particle interactions for
higher concentration of nanoparticles which leads to the suppression of fluid motion. The
results suggest that the thermal conductivity and the viscosity influence convection in an
opposing fashion. When a small fraction of nanoparticles is added, the liquid’s ability to
transfer heat improves noticeably. To achieve efficient heat transport, it is important to
choose nanoparticle–base fluid combinations that yield relatively high F values.

Figure 2 shows the variation of the normalized Nusselt number (Nunl) with the
time (τ∗) in the case of pre-chaotic motion for Palm-oil-Cu nanoliquid at different
nanoparticle volume fractions (α = 0.02, 0.03, and 0.04). Figure 3 shows the variation
of the Nusselt number (Nunl) with the time (τ∗) for Palm-oil-TiO2 nanoliquid at different
nanoparticle volume fractions (α = 0.02, 0.03, and 0.04). The results reveal that the heat
transfer slightly increases with increasing nanoparticle concentration. This enhancement
is attributed to the improved effective thermal conductivity and thermal diffusivity of the
nanoliquid at higher volume fractions.

Values of rH for volume fraction, α = 0.04 are given in Table 5. These values are
very high for nanoliquids since the Pr values are very large and hence we can come to
the conclusion that onset of chaotic convection is delayed in the case of Palm-Oil-based
nanoliquids. This characteristic of nanoliquids is very useful to maintain the stability of
the system.

Table 1: Values of thermophysical properties of Palm-oil at room
temperature (300K).

Quantity Palm-oil

Density (ρbl) [kg/m3] 885[26]

Thermal expansion coefficient (βbl) [K−1×105] 7.27∗

Specific heat (Cpbl ) [J/kgK] 1875[26]

Thermal-conductivity (kbl) [W/mK] 8.4[26]

Dynamic-viscosity (µbl) [kg/m-s] 0.485[26]
* Estimated value from available related data

4 Conclusion
The conclusions of the study are presented as follows:

1. Industry and kitchen wastes can be utilised in automobiles as thermal coolants.
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Table 2: Values of thermophysical properties of Copper and Titanium dioxide nanoparticles at
room temperature (300K).

Quantity Copper[27] Titanium dioxide[27], [28]

Density (ρnp) [kg/m3] 8933.00 4157.00

Thermal expansion coefficient (βnp)[K−1×105] 0001.67 0002.87

Specific heat (Cpnp ) [J/kgK] 0385.00 0710.00

Thermal-conductivity (knp)[W/mK] 0401.00 0008.40

Table 3: Thermophysical properties of Palm-oil-based nanoliquids for different volume fractions.

Nanoliquids α ρnl knl µnl (Cp)nl βnl×10−5 αnl×107 Prnl

Palm-oil–Cu
0.02

1045.96 0.152807 0.510125 1620.49 60.5674 0.90153 5409.81

Palm-oil–TiO2 0950.80 0.152369 0.510125 1772.69 66.5673 0.90402 5934.87

Palm-oil–Cu
0.03

1126.44 0.157346 0.523374 1520.52 55.8013 0.91866 5057.64

Palm-oil–TiO2 0983.70 0.156677 0.523374 1726.67 63.8086 0.92243 5767.87

Palm-oil–Cu
0.04

1206.92 0.161980 0.537111 1433.87 51.6709 0.93599 4754.59

Palm-oil–TiO2 1016.60 0.161070 0.537111 1683.62 61.2285 0.94106 5604.43

Table 4: Values of the factor, F .
Nanoliquids α = 0.02 α = 0.03 α = 0.04

Palm-oil–Cu 0.901114 0.855196 0.811467

Palm-oil–TiO2 0.897799 0.850506 0.805570

Table 5: Values of rH for nanoliquids with α = 0.04.
Nanoliquids Prnl b∗ rH

Palm-oil–Cu 4754.59 0.112798 242578

Palm-oil–TiO2 5604.43 0.118502 222797
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Figure 2: Plot of Nunl versus τ∗ for Palm− oil−Cu nanoliquid for different volume
fractions.

Figure 3: Plot of Nunl versus τ∗ for Palm−oil−TiO2 nanoliquid for different volume
fractions.
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2. Palmoil-based nanoliquids have very high viscosity and are hence stable in appli-
cation situations.
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