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Abstract 
The paper reports the effects of different types of temporal periodic modulation of 

boundary temperature (TPMBT) on convective heat transfer in a rotating ferroliquid. 

The linear stability analysis yields the eigenvalue for the onset of convection. The 

amplitude equations for nonlinear analysis have been derived with the aid of the 

truncated double Fourier Series in its minimal mode. The system of amplitude equations 

which is a Lorenz-like model is a non-autonomous system due to TPMBT. The results 

for various parameters have been discussed for both terrestrial as well as the 

microgravity case. It is observed that increasing strength of the magnetic field advances 

the onset of convection but does not result in enhanced heat transfer. The Coriolis 

acceleration stabilizes the system and hence results in subdued heat transfer. It is also 

observed that choice of the waveform and frequency of modulation can be used to 

control heat transfer. Classical Lorenz model and the results of dielectric liquid can be 

obtained as a limiting case of the present study. 
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1    Introduction  

It is well known that ferroliquids have been a preferred over magnetic fluids 

owing to its applications varying from mechanical and electrical devices to the 

medical field as reported by Kaiser and Miskolczy [1], Raj and Boulton [2], Raj and 

Moskowitz [3], Raj et al. [4], Raj and Chorney [5], Scherer and Figueiredo Neto [6], 

Sakellari [7], Laird [8] and references therein. These applications include convective 

rotatory systems in terrestrial gravity as well as microgravity environment.  
The convective instablity in ferroliquids have been well documented starting with 

the work of Finlayson [9] followed by Lalas and Carmi [10], Berkovsky and Bashtovoi 

[11], Shliomis [12] to name a few. The effect of micropolarity on ferroconvction was 

reported by Abraham [13]. Some more studies on the onset of convection can be found 

in the works by Kaloni and Lou [14], Nanjundappa and Shivakumara [15], Prakash [16], 

Nanjundappa et al. [17], Laroze et al. [18], Sekhar et al [19], [20]. The effect of rotation 

on the onset of convection in ferroliquids have been investigated by Gupta and Gupta 

[21], Bhattacharyya and Abbas [22], Venkatasubramanian and Kaloni [23], 

Auernhammer and Brand [24], Kaloni and Lou [25], Laroze et al. [26] and Siddheshwar 

et al [27].  

It is imperative to control convective instability in some of the applications and 

modulation of the boundary temperature or the body force or magnetic field or rotation 

is a natural choice. Siddheshwar and Abraham [28], Bajaj [29], Singh and Bajaj [30], 

[31], Singh et al. [32], Chandrashekara and Rajashree [33] have studied the effects of  

temperature modulation on the onset of convection. The effect of temperature 

modulation on convective mechanism of a rotating ferroliquid has been reported by 
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Sibanda and Noreldin [34] and Maruthamanikandan et al. [35]. The effects of g-

jitter/rotational modulation/magnetic field modulation on convection have been 

investigated by Engler and Odenbach [36], [37], Neha Anam et al. [38], Jayalatha and 

Muchikel [39] and Meghana et al. [40]. Kanchana et al. [41] have studied the impact of 

higher modes on regular and chaotic convection in ferroliquids. Dev and Suthar [42] 

have investigated the effect of penetrative convection via internal heating on 

ferroconvection through linear stability as well as energy stability methods. Nandal [43] 

has studied the effect of internal heat source and mixed boundary conditions on 

ferroconvection with Langevin magnetization.  

The mentioned literature deal mainly with the onset of convection. Very few works 

are available that deal with the nonlinear analaysis. The investigations on nonlinear 

analysis when available deal mainly with the modulations of the sinusoidal type only. 

The choice of temperature modulations can be a controlling  mechanism as reported by 

Bhadauria [44]. Hence it is an endeavour to understand the combined effects of rotation 

and different forms of thermal modulation on heat transfer in ferroliquids. 

 

2 Mathematical formulation 

A Newtonian ferromagnetic liquid is confined between two horizontal, 

thermally conducting, non-deformable boundaries that are assumed to have 

vanishing tangential stresses. The lower boundary is maintained at higher 

temperature than upper boundary. The temperatures at the boundaries are further 

subjected to time-periodic non-sinusoidal modulations. This setup is rotated about 

the axis normal to the liquid layer. The schematic of the configuration is as shown 

in Figure 1. 

 
Figure 1: Schematic of the flow configuration. 

The governing equations for the configuration mentioned above are as follows 

(Finlayson [9] and Auernhammer and Brand [24]): 

∇ ∙ 𝑞⃗ = 0,      (1) 

 

𝜌0 (
𝜕𝑞⃗⃗

𝜕𝑡
+ 𝑞⃗ ∙ ∇𝑞⃗) = −∇𝑃 + ρ𝑔⃗ + ∇ ∙ (𝐻⃗⃗⃗𝐵⃗⃗) + 𝜇∇2𝑞⃗ + 2𝜌0(𝑞⃗ × Ω⃗⃗⃗), (2) 

𝜌0𝐶 (
𝜕𝜃

𝜕𝑡
+ 𝑞⃗ ∙ ∇𝜃) = 𝜅1∇2𝜃,    (3) 

𝜌 = 𝜌0[1 − 𝛼(𝜃 − 𝜃0)].     (4) 
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It is important to note that ∇𝑃 incorporates the gradient of the fluid pressure and the 

centifugal force. The above system of equations are supplemented by the Maxwell’s 

equations given by:  

𝐵⃗⃗ = 𝜇0(𝐻⃗⃗⃗ + 𝑀⃗⃗⃗),    (5) 

∇ ∙ 𝐵⃗⃗ = 0,     (6) 

∇ × 𝐻⃗⃗⃗ = 0.     (7) 

The assumption that the magnetization is aligned with the magnetic field dictates that 

the 𝑀⃗⃗⃗ = 𝑀(𝐻, 𝜃)
𝐻⃗⃗⃗

𝐻
 where, 

𝑀(𝐻, 𝜃) = 𝑀0 + 𝜒𝑚(𝐻 − 𝐻0) − 𝐾𝑚(𝜃 − 𝜃0). (8) 

The boundary conditions accompanying the governing equations are  given by 

𝑤 = 0 and 
𝜕𝑣

𝜕𝑧
= 0             at      𝑧 = 0, 𝑑, (9) 

(𝐵⃗⃗𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 − 𝐵⃗⃗𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙). 𝑛̂ = 0       at      𝑧 = 0, 𝑑, (10) 

(𝐻⃗⃗⃗𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 − 𝐻⃗⃗⃗𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙) × 𝑛̂ = 0   at      𝑧 = 0, 𝑑, (11) 

𝜃 = 𝜃0 +
∆𝜃

2
[1 + 𝜖𝑓1(𝜔𝑡)]         at      𝑧 = 0, (12)        

𝜃 = 𝜃0 −
∆𝜃

2
[1 − 𝜖𝑓2(𝜔𝑡, 𝛾)]     at       𝑧 = 𝑑, (13) 

where  𝑓2(𝜔𝑡, 0) = 𝑓1(𝜔𝑡) representing the rectangular, saw-tooth or traingular 

waveforms defined over (0,
𝜋

𝜔
). The odd periodic extension of these waveforms over 

the interval (0,
2𝜋

𝜔
) enables the use of Fourier series of sine's and hence expressed as: 

𝑓(𝜔𝑡) = ∑ 𝑏𝑛 sin(𝑛𝜔𝑡)∞
𝑛=1 ,             (14) 

where 𝑏𝑛 =
2

𝑛𝜋
[1 − (−1)𝑛] for the square wave, 𝑏𝑛 =

2

𝑛𝜋
(−1)𝑛+1 for the sawtooth 

wave and 𝑏𝑛 =
8

(𝑛𝜋)2 sin (
𝑛𝜋

2
). 

Conduction phase 

 The quiescent state being motionless is characterized by 𝑞⃗𝑏 = 0 where 𝑏 

represents the basic state. The temporal modulation of the boundary temperature 

enables that the basic temperature to be expressed through a steady as well a transient 

component given by: 

𝜃𝑏 = 𝜃0 + ∆𝜃 (
1

2
−

𝑧

𝑑
) + 𝜖𝜃𝑡(𝑧, 𝑡).  (15) 

 

The transient part can be expressed as: 

𝜃𝑡(𝑧, 𝑡) = ∑ 𝑅𝑒 [{𝑎(𝜆) exp (
𝜆𝑧

𝑑
) + 𝑎(−𝜆) exp (

−𝜆𝑧

𝑑
)} 𝑏𝑛𝑖 exp(−𝑖𝑛𝜔𝑡) ]∞

𝑛=1   
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where 𝑎(𝜆) =
∆𝜃

2
{

exp(−𝑖𝛾)−exp(−𝜆)

exp(𝜆)−exp(−𝜆)
}. The solution of the other state variables in the 

basic state can be expressed as: 

𝜌𝑏(𝑧, 𝑡) = 𝜌0[1 − 𝛼{𝜃𝑏(𝑧, 𝑡) − 𝜃0}],  (17) 

𝑀𝑏(𝑧, 𝑡) = 𝑀0 −
𝐾𝑚{𝜃𝑏(𝑧,𝑡)−𝜃0}

1+𝜒𝑚
,   (18) 

𝐻𝑏(𝑧, 𝑡) = 𝐻0 +
𝐾𝑚{𝜃𝑏(𝑧,𝑡)−𝜃0}

1+𝜒𝑚
,   (19) 

𝐻0
𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑀0 + 𝐻0.                       (20) 

Convection Phase 

 The convection phase is analsysed by superposing infinitesimally small 

disturbances (𝑓′) on the basic state (𝑓𝑏) to represent the transition from the 

condution phase to the convection phase. Hence all the field varaibles (𝑓) are 

expressed as 𝑓 = 𝑓𝑏 + 𝑓′. The magnetization vector yields: 

𝑀⃗⃗⃗′ = (
𝑀0

𝐻0
𝐻1

′ ,
𝑀0

𝐻0
𝐻2

′ , 𝜒𝑚𝐻3
′ − 𝐾𝑚𝜃′).   (21) 

Equations (1) – (8) reduces to: 

∇ ∙ 𝑞⃗′ = 0,    (22) 

𝜌0 (
𝜕𝑞⃗⃗′

𝜕𝑡
+ 𝑞⃗′ ∙ ∇𝑞⃗′) = −∇P′ + ρ′𝑔⃗ + 𝜇∇2𝑞⃗′ + 𝐵0

𝜕𝐻⃗⃗⃗′

𝜕𝑧
+ (𝐵⃗⃗′. ∇)𝐻⃗⃗⃗𝑏

′ + (𝐵⃗⃗′. ∇)𝐻⃗⃗⃗′ +

2𝜌0(𝑞⃗′ × Ω⃗⃗⃗), (23) 

𝜌′ = −𝜌0𝛼𝜃,      (24) 
𝜕𝜃′

𝜕𝑡
=

∆𝜃

𝑑
𝑤′ − 𝑞⃗′ ∙ ∇𝜃′ + 𝜅∇2𝜃′,     (25) 

(1 +
𝑀0

𝐻0
) (

𝜕𝐻1
′

𝜕𝑥
+

𝜕𝐻2
′

𝜕𝑦
) + (1 + 𝜒𝑚)

𝜕𝐻3
′

𝜕𝑧
− 𝐾𝑚

𝜕𝜃′

𝜕𝑧
= 0, 

 (26) 

by assuming 𝐾𝑚∆𝜃 ≪ (1 + 𝜒𝑚)𝐻0.  

The geometry considered indicates that all the field vaiables are invariant along 

𝑦 direction and convection cells are essentially two-dimensional rolls. Further, a stream 

function 𝜓′ which agrees with equation (22) is introduced to facilitate the 

representation of the two-dimensional rolls as 𝑞⃗′ = [∇ × 𝜓′(𝑥, 𝑧)𝑗̂] + 𝑣′(𝑥, 𝑧)𝑗̂. 
Equation (7) also introduces the scalar magentic potential 𝜙′.  Operating 

−𝑗̂. [∇ × equation(23)], dropping the primes and following the standard non-

dimensional procedure in accordance with the Buckingham-Π theorem yeilds: 

1

𝑃𝑟

𝜕

𝜕𝑡
∇2𝜓 = 𝑅

𝜕𝜃

𝜕𝑥
+ 𝑅𝑀1 [

𝜕2𝜙

𝜕𝑥𝜕𝑧
−

𝜕𝜃

𝜕𝑥
]

𝜕𝜃𝑏

𝜕𝑧
+ ∇4𝜓 − √𝑇𝑎

𝜕𝑣

𝜕𝑧
+ 𝑅𝑀1𝐽 (

𝜕𝜙

𝜕𝑧
,𝜃

𝑥,𝑧
) −

1

𝑃𝑟
𝐽 (

𝜓,∇2𝜓

𝑥,𝑧
).  (27) 

 

The additional equation for 𝑣 can be extracted from equation (23) as: 

1

𝑃𝑟

𝜕𝑣

𝜕𝑡
= ∇2𝑣 + √𝑇𝑎

𝜕𝜓

𝜕𝑥
+

1

𝑃𝑟
𝐽 (

𝑣,𝜓

𝑥,𝑧
).   (28) 
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Equations (25) and (26) reduces to: 

𝜕𝜃

𝜕𝑡
=

𝜕𝜓

𝜕𝑧
+ ∇2𝜃 + 𝐽 (

𝜃,𝜓

𝑥,𝑧
),    (29) 

𝑀3
𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑧2 −
𝜕𝜃

𝜕𝑧
= 0.    (30) 

The dimensionless boundary conditions can now be expressed as: 

𝜓 =
𝜕2𝜓

𝜕𝑧2 =
𝜕𝑣

𝜕𝑧
= 𝜃 =

𝜕𝜙

𝜕𝑧
= 0 at 𝑧 = 0, 1.   (31) 

The dimensionless numbers appearing in equations (27) - (30) are 𝑃𝑟, the 

Prandtl number, 𝑅, Rayleigh Number which can percieved as the dimensionless 

temperature difference, 𝑇𝑎, the Taylor number which is a measure of the Coriollis 

acceleration, 𝑀1, the magnetic buoyancy parameter which depends heavily on the 

strength of the magnetic field, and 𝑀3, the magnetization parameter which is a measure 

of departure of magnetization from linearity. 

Linear Analysis 

The linear stability analysis is adopted to investigate the effect of parameter on the 

onset of convection. The study involves dropping of the nonlinear terms from equations 

(27) - (30). The resultant system of equations is an eigen boundary value problem 

where 𝑅 is the eigenvalue. The solution of the linearised equations satisfying equation 

(31) is of the form: 

𝜓(𝑥, 𝑧, 𝑡) = 𝐴11𝑒𝜎𝑡 sin 𝑘𝑥 sin 𝜋𝑧,  (32) 

𝜃(𝑥, 𝑧, 𝑡) = 𝐵11 cos 𝑘𝑥 sin 𝜋𝑧,   (33) 

𝑣(𝑥, 𝑧, 𝑡) = 𝐶11 sin 𝑘𝑥 sin 𝜋𝑧,   (34) 

𝜙(𝑥, 𝑧, 𝑡) = 𝐷11 cos 𝑘𝑥 sin 𝜋𝑧,   (35) 

where 𝜎 = 𝜎𝑟 + 𝑖𝜔 is the complex frequency and 𝑘 is the wavenumber. The use of 

equations (32) - (35) in the linearized eqautions results in a residual system which is 

integrated over the convective cell (𝑥, 𝑧) ∈ (0,
2𝜋

𝑘
)  × (0,1) after multiplying by 

correct orthogonal functions yields a system of linear homogeous equations in the 

amplitudes 𝐴11, 𝐵11 and 𝐶11. The absense of the time derivative in equation (30) 

results in 𝐷11 to be expressed in terms of 𝐵11. The condition for the existence of 

the non-trivial solution of the homogeneous equation results in 

||

𝜂2 (𝜂2 +
𝜎

𝑃𝑟
) −𝑅𝑘 (1 + 𝑀1 −

𝑀1𝜋2

𝜉2 ) 𝜋√𝑇𝑎

𝜋√𝑇𝑎 0 − (𝜂2 +
𝜎

𝑃𝑟
)

𝑘 −(𝜂2 + 𝜎) 0

||=0, (36) 

where  𝜂2 = 𝜋2 + 𝑘2 and 𝜉2 = 𝜋2 + 𝑀3𝑘2. Solving for the eigenvalue 𝑅, equation  

 

(36) simplifies to 

𝑅 =  
𝜉2(𝜂2+𝜎){𝜂2(𝜂2𝑃𝑟+𝜎)

2
+𝜋2𝑇𝑎 𝑃𝑟2}

𝑘2𝑃𝑟{𝜉2(1+𝑀1)−𝑀1𝜋2}(𝜂2𝑃𝑟+𝜎)
.  (37) 
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It is customary to consider 𝜎𝑟 = 0 for marginal stability and further 

equation (37) can be expressed as 𝑅 = 𝑅𝑒(𝑅) + 𝑖𝜔𝑁. The eigenvalue for the onset 

of convection is purely real. This results in the possiblity of either 𝜔 = 0, which 

indicates the preference of instabilty to be through stationary mode or 𝑁 = 0 which 

open up the possibility of oscillatory mode instability. Solving 𝑁 = 0 for  𝜔 yields: 

𝜔2

𝑃𝑟
=

𝜋2𝑇𝑎(1−𝑃𝑟)

𝜂2(1+𝑃𝑟)
− 𝜂4 .   (38) 

It is necessary for 𝜔 to be real and this results in 𝑃𝑟 ∈ (0,1) and 

𝑇𝑎 >
(1+𝑃𝑟)𝜂6

(1−𝑃𝑟)𝜋2.    (39) 

The eigenvalue for the stationary instability, 𝑅𝑆 can be expresssed as: 

𝑅𝑆 =
𝜉2(𝜂6+𝜋2𝑇𝑎)

𝑘2(𝜉2(1+𝑀1)−𝑀1𝜋2)
.                (40) 

The critical values can be obtained by minimizing 𝑅𝑆 with respect to the wave 

number 𝑘. The results of the usual viscous liquid (non-ferroliquid) can be obtained 

by setting 𝑀1 = 0. 

Convection in ferroliquids can set in even in the absence of gravity or the 

microgravity due to strong magnetic fields as established by Finlayson [9]. Setting 

𝑀1 → ∞ and 𝑅 → 0 but 𝑅𝑀1 = 𝑅𝑚 to be finite; results in the eigenvalue 𝑅𝑚𝑆
 for 

stationary mode in microgravity environment given by: 

𝑅𝑚𝑆 =
𝜉2(𝜂6+𝜋2𝑇𝑎)

𝑀3𝑘4 .                                   (41) 

Nonlinear Analysis 

The nonlinear analysis involves solving the system of equations (27) – (30) 

subjected to the boundary conditions given by equation (30). The nature of the 

problem dictates a periodic solution. Hence a truncated double Fourier series with 

time-dependent amplitude is considered as given below. 

𝜓(𝑥, 𝑧, 𝑡) = 𝐴11 sin 𝑘𝑥 sin 𝜋𝑧   

 (42) 

𝜃(𝑥, 𝑧, 𝑡) = 𝐵11 cos 𝑘𝑥 sin 𝜋𝑧 + 𝐵02 sin 2𝜋𝑧  (43) 

𝑣(𝑥, 𝑧, 𝑡) = 𝐶11 sin 𝑘𝑥 sin 𝜋𝑧    (44) 

𝜙(𝑥, 𝑧, 𝑡) = 𝐷11 cos 𝑘𝑥 sin 𝜋𝑧 + 𝐷02 sin 2𝜋𝑧  (45) 

The substitution of equations (31) - (34) in equations (27) - (30) and integrating over 

the convective cell given by (𝑥, 𝑧) ∈ (0,
2𝜋

𝑘
) × (0,1), after multiplying by correct 

orthogonal functions yields a magnetic Lorenz model for convection in rotating 

ferroliquids. The amplitudes are further scaled using 𝑋1 =
𝑘𝜋

√2𝜂2 𝐴11, 𝑋2 =
𝜋𝑟

√2
𝐵11, 𝑋3 =

−𝜋𝑟𝐵02, 𝑋4 =
𝑘

√2𝑇𝑎
𝐶11 and 𝜏 = 𝜂2𝑡 to obtain: 

1

𝑃𝑟

𝑑𝑋1

𝑑𝜏
= −𝑋1 + 𝑋2 (1 +

𝜋2𝑇𝑎

𝜂6 ) [1 − 𝑀13 {
𝑋3

𝜋𝑟
+ 2

𝜖

𝜋
𝐼(𝜏)}] −

𝜋2𝑇𝑎

𝜂6 𝑋4,                 (46) 
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𝑑𝑋2

𝑑𝜏
= 𝑟[1 − 2𝜖𝐼(𝜏)]𝑋1 − 𝑋2 − 𝑋1𝑋3,    (47) 

𝑑𝑋3

𝑑𝜏
= −𝑏𝑋3 + 𝑋1𝑋2,     (48) 

𝑑𝑋4

𝑑𝜏
= 𝑃𝑟[𝑋1 − 𝑋4],      (49) 

where 𝑀13 =
𝜋𝑀1𝑀3𝑘2

𝜋2+𝑘2𝑀3(1+𝑀1)
, 𝑟 =

𝑅

𝑅𝑆(𝑇𝑎=0)
, 𝐼(𝜏) = ∫ 𝐹(𝑧, 𝜏) sin2 𝜋𝑧 𝑑𝑧

1

0
, and 𝑏 =

4𝜋2

𝜂2 .  

The system of equations (46) - (49) can be termed as the magnetic Lorenz model for 

a rotating ferroliquid which are solved subject to the initial conditions considered in 

the study are: 

(𝑋1(0), 𝑋2(0), 𝑋3(0), 𝑋4(0))  =  (3, 3, 3, 3).  (50) 

The choice of the inital values is from the unmouldated case where it is observed 

that the choice of intial value only changes the intercept by 𝑁𝑢(𝜏) on the vertical axis 

but converge to the same value with increasing 𝜏. The main objective of the nonlinear 

analysis is to quantify heat transfer at the hotter boundary. It can be expressed throught 

the Nusselt number: a ratio of convective heat transfer to conductive heat transfer given 

by 

𝑁𝑢(𝜏) =

𝑘𝑐
2𝜋

∫ [
𝑑𝜃𝑏
𝑑𝑧

|
𝜖=0

+
𝜕𝜃′

𝜕𝑧
]
𝑧=0

2𝜋 𝑘𝑐⁄
0

𝑘𝑐
2𝜋

∫ [
𝑑𝜃𝑏
𝑑𝑧

]
𝜖=0,𝑧=0,

2𝜋 𝑘𝑐⁄
0

= 1 +
2𝑋3(𝜏)

𝑟
. (51) 

The Lorenz-like model derived above is a dynamical system and hence the Nusselt 

number number is expected to dispaly an oscillatory behaviour. This could jeopardise 

the analysis of the impact of various parameters on heat transfer. This can be overcome 

through time averaging given by  

𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅ =
1

𝜏𝑛
∫ 𝑁𝑢(𝜏)

𝜏𝑛

0
𝑑𝜏,  ( 52) 

where 𝜏𝑛 =
2𝜋𝜂2

𝜔
. 

 

3   Results and Discussion 
 

A linear as well nonlinear stablity analysis has been performed to investigate 

the heat transfer in rotating ferroliquid with time-periodically modulated thermal 

boundaries. The linear stability analysis reveals the effect of parameters on the 

onset of convection and the nonlinear stability identifies the effect of various 

parameters on the heat transfer at the hotter boundary. 

 

Linear Stablity 

The results are obtained are expressed in equations (39) – (41). Even though 

equation (39) is mathematically valid, there are no known commercially available 

ferroliquid with the Prandtl number Pr∈(0,1). Hence, the possibility of oscillatory 

instabillity in rotating ferroliquids is ruled out. These results are in agreement with that 
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of Auernhammer and Brand [24] and Melson et al. [45]. The critical values of the 

stationary Rayeigh number,, Rc
S (or Rmc

S) can be obtained by minimizing equation (40) 

and (41) with respect to k. The critical values are represted in the table below. 

 

Table 1: Critical values for the marginal stability in a rotating ferroliquid under 

terrestrial gravity. 

M1 Ta 
M3=1 M3=1.5 M3=2 

kc Rc
S kc Rc

S kc Rc
S 

1 

10 2.5604 493.8912 2.5528 460.9519 2.53543 439.9223 

102 2.8704 577.6951 2.8518 540.1532 2.82962 516.9282 

103 3.9449 1049.1648 3.9075 992.9137 3.8791 960.6049 

5 

10 2.9300 223.5740 2.8450 193.8179 2.7792 177.2055 

102 3.1846 251.1261 3.0975 219.7269 3.0332 202.3904 

103 4.1538 413.4637 4.0656 373.6843 4.0073 352.3653 

10 

10 3.0359 131.2564 2.9219 111.6309 2.8407 100.9877 

102 3.2724 146.0242 3.1613 125.5999 3.0841 114.6041 

103 4.2077 234.7018 4.1045 209.7054 4.0382 196.5195 

It can be observed from Table (1) that M1 and M3 have a destabilizing effect on the 

system as increasing M1 or M3 results in decreasing values of Rc
S which indicates an 

advanced onset of convection. But M1 or M3 have contrasting effects on the wave 

number. Increasing M1 results in an increase in the wavenumber indicating a reduction 

in the convective cell but increasing M3 results in a decrease in the wavenumber 

indicating an enlargment of the convective cell. The same is depicted through figure 

(2). The Coriollis force represented by the Taylor number Ta has a stabilizing effect 

on system as there is a delay in the onset of convection indicated by increasing value 

of Rc
S with increasing Ta. But this stabilization is slower than that of the non-

ferroliquid, the results of which can be obtained by setting M1=0. The same can be 

observed in figure (3). 

Table 2: Critical values for the marginal stability in a rotating ferroliquid under 

microgravity. 

Ta 
M3=1 M3=1.5 M3=2 

kc Rmc
S kc Rmc

S kc Rmc
S 

10 3.1710 1578.2656 3.0181 1311.1878 2.9168 1170.9897 

102 3.3848 1736.3133 3.2411 1462.2317 3.1471 1318.9000 

103 4.2756 2710.4618 4.1527 2387.7056 4.0761 2220.6301 

The critical values for the onset of convection in the microgravity environment is 

documented in Table (2). It is observed that increasing M3 or Ta results in delayed 

onset of convection thereby stabilzing the system.  

Nonlinear Stability 

The nonlinear analysis of the effects of Coriolis acceleration and temporal 

modualtion of the boundary has been made. The abridged Fourier series in the minimal 
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mode yields a non-autonomous system of temporal differential equations, contrary to 

the unmodulated case which yields an autonomous system of equations. Equations (46) 

– (49) recuces to the classical Lorenz model under the limiting case. The equations for 

microgravity environment can obtained as a limiting case. These nonlinear equations 

are solved numerically as they are analytically intractable. The ‘ode’ solver in Scilab 

an open source softawre is used for the purpose. The ‘ode’ solver from the LSODA 

package makes a dynamic choice between stiff and non-stiff methods by testing for 

stiffness at each step. This numerical solution is further utilised to compute Nusselt 

number to quantify heat transfer using equation (51). The time averaging given by 

equation (52) is through a numerical quadrature via the Simpson’s 
3

8
 rule. The results 

of temporally averaged Nusselt number as a function of various parameters are plotted 

to smooth out the oscillatory behaviour of a typical dynamical system.   

The parameter domain has been briefed by Laroze et al. [18]. The fixed values of 

the paramters in the obtainining the results are Pr=10, r=5, M1=5, M3=1.5, Ta=100, 

ω=40, ϵ=0.2, with k=
π

√2
 in the case of terrestrial gravity and k=π in the microgravity 

environment. 

We now discuss the effect of each of the parameters on heat transfer for the 

terrestrial gravity case followed by the microgravity case. 

Terrestrial gravity 

Figures (4) - (10) are the plots of Nu(τ)̅̅ ̅̅ ̅̅ ̅̅  as functions of various parameters in the 

terrestrial gravity environment. Figure (4) shows the impact of Prandtl number Pr on 

It is interesting to note from figures (4) – (8) that there is no distinction between an 

unmodulated case and the case in which the modulation at both the boundaries are in-

sync. But the heat transfer is enhanced upon introduction of a phase difference γ for 

moderate values of ω, and reduced heat transfer during out-of-sync modulation for 

very high values of ω. This indicates the importance of phase difference compared to 

the other modulation parameters.  

The figures  (4) – (10) also show the influence of different waveforms used in 

TPMBT. The square wave form of TPMBT with a phase difference is an ideal choice 

among the three forms for enhancing the heat transfer and the saw-tooth wave is the 

least favourable waveform at moderate values of ω. At very high values of ω, the order 

is reversed. 

Microgravity case 

Figures (11)-(16) are the plots of Nu(τ)̅̅ ̅̅ ̅̅ ̅̅  as functions of various parameters in the 

microgravity environment. Figure (11) shows the influence of Pr on heat transfer. Even 

in the case of microgravity, the heat transfer reduces with increase in the values of Pr 

but quantitatively the amount of heat transfer is slightly lower than that of the terrestrial 

gravity case. Figure (12) indicates that an increase in the value of scaled magnetic 

Rayleigh number r results in an increase in the values of Nu(τ)̅̅ ̅̅ ̅̅ ̅̅ , in other words, the 

increase in temperature difference results in enhanced heat transfer. Figure (13) shows 

the plot of Nu(τ)̅̅ ̅̅ ̅̅ ̅̅  as function of M3 in the microgravity environment. Unlike the 

terrestrial gravity case, increasing M3 results in enhanced heat transfer in the 

microgravity situation. Figure (14) shows the effect of Coriolis acceleration on heat 
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transfer. The declining curve is indicative of the fact that heat transfer reduces in a 

rotating ferroliquid with increasing angular velocity, in other words due to an increase 

in Ta. Figure (15) shows the effect of modulation frequency on Nu(τ)̅̅ ̅̅ ̅̅ ̅̅ . The figure 

indicates that increasing the modulation frequency results in a very slight increase in 

heat transfer for small values of ω and then we see a reduced heat transfer with further 

increase in ω. At high values of ω, in-sync modulation results in higher heat transfer 

when compared to the asynchronous modulation.  Figure (16) shows the effect of 

amplitude of modulation on heat transfer. The graph shows that the Nu(τ)̅̅ ̅̅ ̅̅ ̅̅  curve 

increases with increasing values of ϵ, which indicates that increasing the amplitude of 

modulation results in enhanced heat transfer. 

Similar to the terrestrial gravity case, the in-phase modulation has no impact on the 

heat transfer. The effect of different waveforms with asynchronous TPMBT in the 

microgravity case is similar to that of the terrestrial gravity case. Further, one can see 

from figures (11)-(15) that the microgravity results in slightly reduced heat transfer 

when compared to the terrestrial gravity case. 

An analogy between the ferroliquids and dielectric fluids is well established and 

reported by Siddheshwar et al. [27] and reference there in. The results of the dielectric 

fluid can be obtained as a limiting case of the present study by setting M1=L, the 

electric number and M3=1.  

4 Conclusion 
 

The linear and non-linear analysis of the ferro-convection under the influence of 

Coriolis acceleration when the boundary temperatures are subjected to temporal 

periodic modulation has been investigated. The expressions for the eigenvalue for the 

marginal stability and the magnetic Lorenz model have been derived for both terrestrial 

gravity and microgravity environments. The following inferences are drawn from the 

results of the study. 

• Increasing magnetic field as well as the departure of the mgnetization from 

linearity destabilizes the ferroliquid by advancing the onset of convection. 

• Increasing rotation rates results in a stabilized system by delaying the onset of 

convection. 

• There is a reduction in the heat transfer with increasing the values of the 

Prandtl number Pr. 

• Increasing the temperature difference between the boundaries which is 

manifested through a corresponding increase in r results in enhanced heat 

transfer. 

• Increasing values of M1 results in diminished heat transfer in the 

presence/absence of temperature modulation. 

• Increasing values of M3 has similar effect on heat transfer as M1 in the case 

of terrestrial gravity only. In the microgravity situation, the buoyancy forces 

are negligible and the heat transfer due to M3 is antagonistic to that of the 

terrestrial gravity environment. 
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• The increasing values of Ta results in the reduced heat transfer. 

• TPMBT has no influence on heat transfer when the modulation is in-phase 

i.e., when γ=0. The phase difference γ plays an important role in controlling 

the heat transfer. The phase difference results in higher heat transfer when 

compared to the unmodulated/in-phase modulation for moderate values of ω 

and diminished heat transfer at very high values of ω. 

• The non-sinusoidal forms of modulation with phase difference can be used to 

obtain varied levels of heat transfer. The study reveals that 

Nu(τ)̅̅ ̅̅ ̅̅ ̅̅
square>Nu(τ)̅̅ ̅̅ ̅̅ ̅̅

triangular>Nu(τ)̅̅ ̅̅ ̅̅ ̅̅
saw-tooth 

for moderate values of ω. The above order is reversed at very high values of 

ω. 

• At a certain value of ω, the heat transfer due to different wave forms and in-

sync and out-of-sync thermal modulation converge.  

 

 
Figure 2: a) Plot of wave number vs 𝑀1 when 𝑀3 = 1.5 and  𝑇𝑎 = 100. 

           b) Plot of wave number vs 𝑀3 when 𝑀1 = 5 and 𝑇𝑎 = 100. 

 

 
Figure 3: Plot of 𝑅𝑐

𝑆 vs 𝑇𝑎. 

 

 



Vol. 01, No. 02                                                                                                                                             

Page 28 

 

 

 
Figure 4: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with 𝑃𝑟 under terrestrial gravity. 

 

 

Figure 5: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with 𝑟 under terrestrial gravity. 

 

 

Figure 6: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with 𝑀1 under terrestrial gravity. 
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Figure 7: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with 𝑀3 under terrestrial gravity. 

 

 

Figure 8: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with 𝑇𝑎 under terrestrial gravity. 

 

Figure 9: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with ω under terrestrial gravity. 
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Figure 10: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with 𝜖 under terrestrial gravity. 

 

 

Figure 11: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with 𝑃𝑟 under microgravity. 

 

 

Figure 9: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with 𝑟 under microgravity. 
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Figure 10: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with 𝑀3 under microgravity. 

 

Figure 11: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with 𝑇𝑎 under microgravity. 

 

 

 

Figure 15: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with 𝜔 under microgravity. 
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Figure 16: Variation of  𝑁𝑢(𝜏)̅̅ ̅̅ ̅̅ ̅̅  with 𝜖 under microgravity. 
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