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Abstract

The paper reports the effects of different types of temporal periodic modulation of
boundary temperature (TPMBT) on convective heat transfer in a rotating ferroliquid.
The linear stability analysis yields the eigenvalue for the onset of convection. The
amplitude equations for nonlinear analysis have been derived with the aid of the
truncated double Fourier Series in its minimal mode. The system of amplitude equations
which is a Lorenz-like model is a non-autonomous system due to TPMBT. The results
for various parameters have been discussed for both terrestrial as well as the
microgravity case. It is observed that increasing strength of the magnetic field advances
the onset of convection but does not result in enhanced heat transfer. The Coriolis
acceleration stabilizes the system and hence results in subdued heat transfer. It is also
observed that choice of the waveform and frequency of modulation can be used to
control heat transfer. Classical Lorenz model and the results of dielectric liquid can be
obtained as a limiting case of the present study.
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1 Introduction

It is well known that ferroliquids have been a preferred over magnetic fluids
owing to its applications varying from mechanical and electrical devices to the
medical field as reported by Kaiser and Miskolczy [1], Raj and Boulton [2], Raj and
Moskowitz [3], Raj et al. [4], Raj and Chorney [5], Scherer and Figueiredo Neto [6],
Sakellari [7], Laird [8] and references therein. These applications include convective
rotatory systems in terrestrial gravity as well as microgravity environment.

The convective instablity in ferroliquids have been well documented starting with
the work of Finlayson [9] followed by Lalas and Carmi [10], Berkovsky and Bashtovoi
[11], Shliomis [12] to name a few. The effect of micropolarity on ferroconvction was
reported by Abraham [13]. Some more studies on the onset of convection can be found
in the works by Kaloni and Lou [14], Nanjundappa and Shivakumara [15], Prakash [16],
Nanjundappa et al. [17], Laroze et al. [18], Sekhar et al [19], [20]. The effect of rotation
on the onset of convection in ferroliquids have been investigated by Gupta and Gupta
[21], Bhattacharyya and Abbas [22], Venkatasubramanian and Kaloni [23],
Auernhammer and Brand [24], Kaloni and Lou [25], Laroze et al. [26] and Siddheshwar
etal [27].

It is imperative to control convective instability in some of the applications and
modulation of the boundary temperature or the body force or magnetic field or rotation
is a natural choice. Siddheshwar and Abraham [28], Bajaj [29], Singh and Bajaj [30],
[31], Singh et al. [32], Chandrashekara and Rajashree [33] have studied the effects of
temperature modulation on the onset of convection. The effect of temperature
modulation on convective mechanism of a rotating ferroliquid has been reported by
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Sibanda and Noreldin [34] and Maruthamanikandan et al. [35]. The effects of g-
jitter/rotational modulation/magnetic field modulation on convection have been
investigated by Engler and Odenbach [36], [37], Neha Anam et al. [38], Jayalatha and
Muchikel [39] and Meghana et al. [40]. Kanchana et al. [41] have studied the impact of
higher modes on regular and chaotic convection in ferroliquids. Dev and Suthar [42]
have investigated the effect of penetrative convection via internal heating on
ferroconvection through linear stability as well as energy stability methods. Nandal [43]
has studied the effect of internal heat source and mixed boundary conditions on
ferroconvection with Langevin magnetization.

The mentioned literature deal mainly with the onset of convection. Very few works
are available that deal with the nonlinear analaysis. The investigations on nonlinear
analysis when available deal mainly with the modulations of the sinusoidal type only.
The choice of temperature modulations can be a controlling mechanism as reported by
Bhadauria [44]. Hence it is an endeavour to understand the combined effects of rotation
and different forms of thermal modulation on heat transfer in ferroliquids.

2 Mathematical formulation

A Newtonian ferromagnetic liquid is confined between two horizontal,
thermally conducting, non-deformable boundaries that are assumed to have
vanishing tangential stresses. The lower boundary is maintained at higher
temperature than upper boundary. The temperatures at the boundaries are further
subjected to time-periodic non-sinusoidal modulations. This setup is rotated about
the axis normal to the liquid layer. The schematic of the configuration is as shown
in Figure 1.
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Figure 1: Schematic of the flow configuration.
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The governing equations for the configuration mentioned above are as follows
(Finlayson [9] and Auernhammer and Brand [24]):

V= @
po(E+G-v )=—VP+pg+V (HB) + uv2q + 2p,(d x 9), @
C(E -ve) = K,V26), 3)

p = poll—a(d —6,)]. (4)
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It is important to note that VP incorporates the gradient of the fluid pressure and the
centifugal force. The above system of equations are supplemented by the Maxwell’s
equations given by:

B = po(H + M), (5)
V-B=0, (6)
VxH=0. @)

The assumption that the magnetization is aligned with the magnetic field dictates that
the M = M(H, 9) % where,

M(H,0) = My + xm(H — Hy) — Ky (0 — 6,).  (8)
The boundary conditions accompanying the governing equations are given by

w=0and3—j=0 at z=0,d, 9)
(Einternal - §external)-ﬁ =0 at z=0,d, (10)
(Hinternal - Hexternal) xfi=0 at z=0,d, (11)
0=0,+ [1+efi(wt)] at z=0, (12)
0=0,-F[l-efwt] at z=d (13
where  f,(wt,0) = f;(wt) representing the rectangular, saw-tooth or traingular
waveforms defined over (0, %) The odd periodic extension of these waveforms over

. 2 . . .
the interval (0, ;") enables the use of Fourier series of sine's and hence expressed as:

f(wt) = X3 by sin(nwt), (14)

where b,, = i[1 — (—1)"] for the square wave, b,, = %(—1)’“r1 for the sawtooth

wave and b,, = (n oz S0 (nzn)

Conduction phase

The quiescent state being motionless is characterized by ¢, = 0 where b
represents the basic state. The temporal modulation of the boundary temperature
enables that the basic temperature to be expressed through a steady as well a transient
component given by:

6, = 0o+ 40 (5= 2) + €6, (z,1). (15)

The transient part can be expressed as:

0.(z,t) =Y. Re [{a(l) exp( ) + a(—A1) exp( )} b, i exp(—inwt) ]
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where a(}) = ﬁ{w}. The solution of the other state variables in the
2 exp(1)—exp(-1)

basic state can be expressed as:

pu(z,t) = po[1 — aggb((z,) tz}; 6031, 17)
Km £)—

My(z,t) = M, — # (18)

Hy(z,t) = Hy + %}:“ (19)

Hexternal = M.+ H,. (20)

Convection Phase

The convection phase is analsysed by superposing infinitesimally small
disturbances (f') on the basic state (f,) to represent the transition from the
condution phase to the convection phase. Hence all the field varaibles (f) are
expressed as f = f, + f'. The magnetization vector yields:

—

r M ! M ! ! !
M= (H—ZHl,H—;’HZ,)(mH3 — Knb'). 1)
Equations (1) — (8) reduces to:

V-3’ =0, (22)
0 (% +d vq') = —VP' +0'g + uV?q + By 2o + (B'.V)Hy + (B'.V)H' +
2p0(3' x Q),  (23)

, p' = —poad, (24)
S =W -G V6 + KV, (25)
Mo\ (9H1 | 0Hz 9H3 _ 4, 90" _
(1+H0)(6x+6y)+(1+)(m) 0z maz_o'

(26)
by assuming K, A0 < (1 + x»)H,.

The geometry considered indicates that all the field vaiables are invariant along
y direction and convection cells are essentially two-dimensional rolls. Further, a stream
function ' which agrees with equation (22) is introduced to facilitate the
representation of the two-dimensional rolls as ¢’ = [V x ¢'(x, 2)j] + v'(x, 2)].
Equation (7) also introduces the scalar magentic potential ¢’.  Operating
—Jj.[V X equation(23)], dropping the primes and following the standard non-
dimensional procedure in accordance with the Buckingham-IT theorem yeilds:

10

¢
2 _ p08 0%¢ 90196y | ga, o 2%\ _
PratVt/)—Rax+RM1[ ] + V4 \/TaaZ+RM1]<;Z

axaz_ax 0z
1 V2
(). @)

Pr X,z

The additional equation for v can be extracted from equation (23) as:

10v _ oo oY 1 vy

Pr ot
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Equations (25) and (26) reduces to:
90 _ oy o

5ot sze +7(%), (29)

9422 Y- (30)

3%9x2 " 322 9z
The dimensionless boundary conditions can now be expressed as:

2
p=22="=p=2=0atz=01 (31)

The dimensionless numbers appearing in equations (27) - (30) are Pr, the
Prandtl number, R, Rayleigh Number which can percieved as the dimensionless
temperature difference, Ta, the Taylor number which is a measure of the Coriollis
acceleration, M,, the magnetic buoyancy parameter which depends heavily on the
strength of the magnetic field, and M5, the magnetization parameter which is a measure
of departure of magnetization from linearity.

Linear Analysis

The linear stability analysis is adopted to investigate the effect of parameter on the
onset of convection. The study involves dropping of the nonlinear terms from equations
(27) - (30). The resultant system of equations is an eigen boundary value problem
where R is the eigenvalue. The solution of the linearised equations satisfying equation
(31) is of the form:

P(x,z,t) = Ay,€° sinkx sinmz, (32)
0(x,z,t) = By4 cos kx sinmz, (33)
v(x,z,t) = C;; sinkx sinmz, (34)
¢(x,z,t) = D;; coskxsinmnz, (35)

where ¢ = ¢, + iw is the complex frequency and k is the wavenumber. The use of
equations (32) - (35) in the linearized eqautions results in a residual system which is

2

integrated over the convective cell (x,z) € (O'T) x (0,1) after multiplying by

correct orthogonal functions yields a system of linear homogeous equations in the
amplitudes A,,, B;; and C;;. The absense of the time derivative in equation (30)
results in D,; to be expressed in terms of B;;. The condition for the existence of
the non-trivial solution of the homogeneous equation results in

n? (n? +=) —Rk(1+M, - Mgfz) Ta
mTa 0 -+ GO
k -Mm% +0) 0

where n? = 2 + k? and €2 = w2 + M;k?. Solving for the eigenvalue R, equation

(36) simplifies to

R= 52(1]2+U){1]2(1]2Pr+0)2+rc2TaPrz}
T k2Pr{€2(1+My)-M w2} (n2Pr+0)

@37)
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It is customary to consider g, = 0 for marginal stability and further
equation (37) can be expressed as R = Re(R) + iwN. The eigenvalue for the onset
of convection is purely real. This results in the possiblity of either w = 0, which
indicates the preference of instabilty to be through stationary mode or N = 0 which
open up the possibility of oscillatory mode instability. Solving N = 0 for w yields:

w? _ m?Ta(1-Pr) 4
pr n2(1+Pr) ' (38)

It is necessary for w to be real and this results in Pr € (0,1) and

Tq > G¥PDn° (39)

(1-Pr)m?

The eigenvalue for the stationary instability, RS can be expresssed as:

s _ £2(n®+n?Ta)
R = K2 (£2(1+Mq)—My72)’ (40)

The critical values can be obtained by minimizing RS with respect to the wave
number k. The results of the usual viscous liquid (non-ferroliquid) can be obtained
by setting M, = 0.

Convection in ferroliquids can set in even in the absence of gravity or the
microgravity due to strong magnetic fields as established by Finlayson [9]. Setting
M; - o and R - 0 but RM; = Rm to be finite; results in the eigenvalue Rm® for
stationary mode in microgravity environment given by:

s _ £2(n®+n?Ta) (41)

Rm "
M3k

Nonlinear Analysis

The nonlinear analysis involves solving the system of equations (27) — (30)
subjected to the boundary conditions given by equation (30). The nature of the
problem dictates a periodic solution. Hence a truncated double Fourier series with
time-dependent amplitude is considered as given below.

Y(x,z,t) = Ay sinkx sinmz

(42)
0(x,z,t) = By, cos kx sinmz + By, sin 2nz (43)
v(x,z,t) = Cy4 sinkx sinmz (44)
¢(x,z,t) = Dy; cos kx sinmz + Dy, sin 2z (45)

The substitution of equations (31) - (34) in equations (27) - (30) and integrating over
the convective cell given by (x,z2) € (02?") % (0,1), after multiplying by correct
orthogonal functions yields a magnetic Lorenz model for convection in rotating

ferroliquids. The amplitudes are further scaled using X, = Ton 2A11,X2 ﬁBll,X3 =
k .
—mrBoz, X4 = 5=Ci and T = n?t to obtain:
1 Xm _ n?Ta 2Ta
=X, + X, (1 + ) [1 M13{ +25 I(T)}] K, (46)
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dX;

dr —_ T'[l - ZEI(T)]X]_ - X2 - X1X3, (47)

% = _bX3 + X].XZ’ (48)

= PriX, — X, (49)

_ mM{M3k? _ R _rt .2 _

where M,; = Trenany T = Baasey I(7) = fo F(z,7)sin?mzdz, and b =
41?2
2

The system of equations (46) - (49) can be termed as the magnetic Lorenz model for
a rotating ferroliquid which are solved subject to the initial conditions considered in
the study are:

(X1(0), X2(0), X3(0), X4 (0)) = (3,3,3,3). (50)

The choice of the inital values is from the unmouldated case where it is observed
that the choice of intial value only changes the intercept by Nu(t) on the vertical axis
but converge to the same value with increasing . The main objective of the nonlinear
analysis is to quantify heat transfer at the hotter boundary. It can be expressed throught
the Nusselt number: a ratio of convective heat transfer to conductive heat transfer given
by

001
=

kc fzn/kc e,
0z
€=0

dz
kc fzn/kc[deb]

2X3(1)

Nu(t) = =0 =1 4 (51)

€=0,z=0,

The Lorenz-like model derived above is a dynamical system and hence the Nusselt
number number is expected to dispaly an oscillatory behaviour. This could jeopardise
the analysis of the impact of various parameters on heat transfer. This can be overcome
through time averaging given by

Nu(z) = Tifofn Nu(7) dr, (52)

2 2
where 7, =

3 Results and Discussion

A linear as well nonlinear stablity analysis has been performed to investigate
the heat transfer in rotating ferroliquid with time-periodically modulated thermal
boundaries. The linear stability analysis reveals the effect of parameters on the
onset of convection and the nonlinear stability identifies the effect of various
parameters on the heat transfer at the hotter boundary.

Linear Stablity

The results are obtained are expressed in equations (39) — (41). Even though
equation (39) is mathematically valid, there are no known commercially available
ferroliquid with the Prandtl number Pre(0,1). Hence, the possibility of oscillatory
instabillity in rotating ferroliquids is ruled out. These results are in agreement with that
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of Auernhammer and Brand [24] and Melson et al. [45]. The critical values of the
stationary Rayeigh number,, RS (or Rm?) can be obtained by minimizing equation (40)
and (41) with respect to k. The critical values are represted in the table below.

Table 1: Critical values for the marginal stability in a rotating ferroliquid under
terrestrial gravity.

My=1 My;=15 My=2

k. RS k. R; k. Ri
10 | 25604 | 493.8912 | 2.5528 | 460.9519 | 2.53543 | 439.9223
1 | 10% | 2.8704 | 577.6951 | 2.8518 | 540.1532 | 2.82962 | 516.9282
103 | 3.9449 | 1049.1648 | 3.9075 | 992.9137 | 3.8791 | 960.6049
10 | 2.9300 | 2235740 | 2.8450 | 193.8179 | 2.7792 | 177.2055
5 | 102 | 3.1846 | 251.1261 | 3.0975 | 219.7269 | 3.0332 | 202.3904
103 | 4.1538 | 413.4637 | 4.0656 | 373.6843 | 4.0073 | 352.3653
10 | 3.0359 | 131.2564 | 2.9219 | 111.6309 | 2.8407 | 100.9877
10 | 102 | 3.2724 | 146.0242 | 3.1613 | 1255999 | 3.0841 | 114.6041
10° | 4.2077 | 234.7018 | 4.1045 | 209.7054 | 4.0382 | 196.5195

M, Ta

It can be observed from Table (1) that M; and M; have a destabilizing effect on the
system as increasing M, or M; results in decreasing values of RS which indicates an
advanced onset of convection. But M; or M; have contrasting effects on the wave
number. Increasing M results in an increase in the wavenumber indicating a reduction
in the convective cell but increasing M; results in a decrease in the wavenumber
indicating an enlargment of the convective cell. The same is depicted through figure
(2). The Coriollis force represented by the Taylor number 7z has a stabilizing effect
on system as there is a delay in the onset of convection indicated by increasing value
of RS with increasing 7a. But this stabilization is slower than that of the non-
ferroliquid, the results of which can be obtained by setting #;,=0. The same can be
observed in figure (3).

Table 2: Critical values for the marginal stability in a rotating ferroliquid under
microgravity.
M3=1 M3=15 M3=2
k. Rm® k. Rm? k. Rnts

10 3.1710 1578.2656 3.0181 | 1311.1878 | 2.9168 1170.9897
102 3.3848 1736.3133 3.2411 | 1462.2317 | 3.1471 1318.9000
103 | 4.2756 2710.4618 4.1527 | 2387.7056 | 4.0761 | 2220.6301

Ta

The critical values for the onset of convection in the microgravity environment is
documented in Table (2). It is observed that increasing M; or 7a results in delayed
onset of convection thereby stabilzing the system.

Nonlinear Stability
The nonlinear analysis of the effects of Coriolis acceleration and temporal
modualtion of the boundary has been made. The abridged Fourier series in the minimal
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mode yields a non-autonomous system of temporal differential equations, contrary to
the unmodulated case which yields an autonomous system of equations. Equations (46)
— (49) recuces to the classical Lorenz model under the limiting case. The equations for
microgravity environment can obtained as a limiting case. These nonlinear equations
are solved numerically as they are analytically intractable. The ‘ode’ solver in Scilab
an open source softawre is used for the purpose. The ‘ode’ solver from the LSODA
package makes a dynamic choice between stiff and non-stiff methods by testing for
stiffness at each step. This numerical solution is further utilised to compute Nusselt
number to quantify heat transfer using equation (51). The time averaging given by

equation (52) is through a numerical quadrature via the Simpson’s g rule. The results

of temporally averaged Nusselt number as a function of various parameters are plotted
to smooth out the oscillatory behaviour of a typical dynamical system.

The parameter domain has been briefed by Laroze et al. [18]. The fixed values of
the paramters in the obtainining the results are Pr=10, r=5, M;=5, M;=1.5, Ta=100,
w=40, €=0.2, with k= ‘% in the case of terrestrial gravity and k= in the microgravity

environment.

We now discuss the effect of each of the parameters on heat transfer for the
terrestrial gravity case followed by the microgravity case.

Terrestrial gravity

Figures (4) - (10) are the plots of Nu(7) as functions of various parameters in the
terrestrial gravity environment. Figure (4) shows the impact of Prandtl number Pron
It is interesting to note from figures (4) — (8) that there is no distinction between an
unmodulated case and the case in which the modulation at both the boundaries are in-
sync. But the heat transfer is enhanced upon introduction of a phase difference y for
moderate values of w, and reduced heat transfer during out-of-sync modulation for
very high values of w. This indicates the importance of phase difference compared to
the other modulation parameters.

The figures (4) — (10) also show the influence of different waveforms used in
TPMBT. The square wave form of TPMBT with a phase difference is an ideal choice
among the three forms for enhancing the heat transfer and the saw-tooth wave is the
least favourable waveform at moderate values of w. At very high values of w, the order
is reversed.

Microgravity case

Figures (11)-(16) are the plots of Nu(7) as functions of various parameters in the
microgravity environment. Figure (11) shows the influence of Pron heat transfer. Even
in the case of microgravity, the heat transfer reduces with increase in the values of Pr
but quantitatively the amount of heat transfer is slightly lower than that of the terrestrial
gravity case. Figure (12) indicates that an increase in the value of scaled magnetic
Rayleigh number rresults in an increase in the values of Nu(7), in other words, the
increase in temperature difference results in enhanced heat transfer. Figure (13) shows
the plot of Nu(7) as function of M in the microgravity environment. Unlike the
terrestrial gravity case, increasing M; results in enhanced heat transfer in the
microgravity situation. Figure (14) shows the effect of Coriolis acceleration on heat
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transfer. The declining curve is indicative of the fact that heat transfer reduces in a
rotating ferroliquid with increasing angular velocity, in other words due to an increase
in 7a. Figure (15) shows the effect of modulation frequency on Nu(z). The figure
indicates that increasing the modulation frequency results in a very slight increase in
heat transfer for small values of w and then we see a reduced heat transfer with further
increase in w. At high values of w, in-sync modulation results in higher heat transfer
when compared to the asynchronous modulation. Figure (16) shows the effect of
amplitude of modulation on heat transfer. The graph shows that the Nu(7) curve
increases with increasing values of €, which indicates that increasing the amplitude of
modulation results in enhanced heat transfer.

Similar to the terrestrial gravity case, the in-phase modulation has no impact on the
heat transfer. The effect of different waveforms with asynchronous TPMBT in the
microgravity case is similar to that of the terrestrial gravity case. Further, one can see
from figures (11)-(15) that the microgravity results in slightly reduced heat transfer
when compared to the terrestrial gravity case.

An analogy between the ferroliquids and dielectric fluids is well established and
reported by Siddheshwar et al. [27] and reference there in. The results of the dielectric
fluid can be obtained as a limiting case of the present study by setting M;=L, the
electric number and M;=1.

4 Conclusion

The linear and non-linear analysis of the ferro-convection under the influence of
Coriolis acceleration when the boundary temperatures are subjected to temporal
periodic modulation has been investigated. The expressions for the eigenvalue for the
marginal stability and the magnetic Lorenz model have been derived for both terrestrial
gravity and microgravity environments. The following inferences are drawn from the
results of the study.

e Increasing magnetic field as well as the departure of the mgnetization from
linearity destabilizes the ferroliquid by advancing the onset of convection.

e Increasing rotation rates results in a stabilized system by delaying the onset of
convection.

e There is a reduction in the heat transfer with increasing the values of the
Prandtl number Pr.

e Increasing the temperature difference between the boundaries which is
manifested through a corresponding increase in r results in enhanced heat
transfer.

e Increasing values of M; results in diminished heat transfer in the
presence/absence of temperature modulation.

e Increasing values of M5 has similar effect on heat transfer as M in the case
of terrestrial gravity only. In the microgravity situation, the buoyancy forces
are negligible and the heat transfer due to A% is antagonistic to that of the
terrestrial gravity environment.
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The increasing values of 7aresults in the reduced heat transfer.

TPMBT has no influence on heat transfer when the modulation is in-phase
i.e., when y=0. The phase difference y plays an important role in controlling
the heat transfer. The phase difference results in higher heat transfer when
compared to the unmodulated/in-phase modulation for moderate values of w
and diminished heat transfer at very high values of w.

The non-sinusoidal forms of modulation with phase difference can be used to
obtain varied levels of heat transfer. The study reveals that

Nu ( T) 5quare> Nu ( T) triangu]ar> Nu ( T) saw-tooth

for moderate values of w. The above order is reversed at very high values of
w.

At a certain value of w, the heat transfer due to different wave forms and in-
sync and out-of-sync thermal modulation converge.

3.21 3.21
3.1+
34 3.151
2.91
-« -«
284 3.1+
2.7 1
264 3.051
2.5 +rrr-r-r-rrr-r—s T T T T J
0123456782910 1 12 14 16 18 2
M, M,

Figure 2: a) Plot of wave number vs M; when M5 = 1.5 and Ta = 100.
b) Plot of wave number vs M5 when M; = 5 and Ta = 100.
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Figure 3: Plot of RS vs Ta.
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Figure 4: Variation of Nu(t) with Pr under terrestrial gravity.
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Figure 6: Variation of Nu(t) with M; under terrestrial gravity.
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Figure 7: Variation of Nu(7) with M5 under terrestrial gravity.

226
:

2259 s
g .
204 Peiaesectesnes 4__ _ =0, Triangular ' &
203 & ® o ¥=n/2, Square
o ; + & o 7=mu/2, Sewtooth
% 2.22 \ Ooo% o o o+=mn/2, Triangular
= 221 000000000000000000000000(

ey
*04e0s
2.2 900040044 ¢ ¢ 0 o 0 s 0 0 0 0 s

219
218

217

0 1000 2000 3000 4000 5000
Ta

Figure 8: Variation of Nu(7) with Ta under terrestrial gravity.

Figure 9: Variation of Nu(7) with w under terrestrial gravity.
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Figure 10: Variation of Nu(t) with € under terrestrial gravity.
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