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Path (or cycle)-trees with Graph Equations
involving Line and Split Graphs

H. P. Patil∗and V. Raja†

Abstract

H-trees generalizes the existing notions of trees, higher di-
mensional trees and k-ctrees. The characterizations and
properties of both Pk-trees for k ≥ 4 and Cn-trees for
n ≥ 5 and their hamiltonian property, dominations, pla-
narity, chromatic and b-chromatic numbers are established.
The conditions under which Pk-trees for k ≥ 3 (resp. Cn-
trees for n ≥ 4), are the line graphs are determined. The
relationship between path-trees and split graphs are devel-
oped.
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1. Introduction

We follow Harary[5] for all terminologies related to graphs. Given a
graph G, V(G) and E(G) denote the sets of vertices and edges of G,
respectively and Ḡ denotes the complement of G. Pn and Cn denote
a path of n vertices and cycle of n vertices, respectively. For any con-
nected graph G, nG denotes the graph with n components, each being
isomorphic to G. For any two disjoint graphs G and H, G +H denotes
the join of G and H.[5] A tree is a connected graph without cycles. A
star is a tree K1,n for n ≥ 1. A graph G is n-connected if the removal of
any m vertices for 0 ≤ m < n, from G results in neither a disconnected
graph nor a trivial graph. A graph G is triangulated if every cycle of
length strictly greater than 3 possesses a chord; that is, an edge join-
ing two nonconsecutive vertices of the cycle. Equivalently, G does not
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contain an induced subgraph isomorphic to Cn for n > 3. A graph G is
n-degenerate for n ≥ 0 if every induced subgraph of G has a vertex of
degree at most n.

2. Structure of H-trees

Notice that trees are equivalently defined by the following recursive
construction rule:
Step 1. A single vertex K1 is a tree.
Step 2. Any tree of order n ≥ 2, can be constructed from a tree Q of
order n − 1 by inserting an nth - vertex and joining it to any vertex of
Q.

In [10], the above tree-construction procedure is extended by al-
lowing the base to be any graph. It is natural that a connected graph,
which is not a tree possesses a structure that reflects like a tree and
its recursive growth starts from any graph. In other words, for any
given graph H, there is associated another graph, we call H-tree that
is constructed as follows.

Definition 2.1. Let H be any graph of order k. An H-tree, denoted by
G⟨H⟩, is a graph that can be obtained by the following recursive con-
struction rule:
Step 1. H is the smallest H-tree.
Step 2. To an H-tree G⟨H⟩ of order n ≥ k, insert an (n + 1)th-vertex and
join it to any set of k distinct vertices: vi1 , vi2 , . . . , vik of G⟨H⟩, so that the
induced subgraph ⟨{vi1 , vi2 , . . . , vik }⟩ is isomorphic to H.

For example, K1,3-tree of order 8 is shown in Figure 1.

Remark 2.2. 1. The notion of K1-trees is the usual concept of trees.
2. The notion of K2-trees is equivalent to the notion of 2-trees, which is
studied in [7]. Actually, they form a special subclass of planar graphs.
In fact, the maximal outerplanar graphs are the only outerplanar K2-
trees.
3. The notion of Kk-trees is equivalent to the notion of k-trees[2, 7] and
they form actually a family of k-connected, triangulated and Kk+2-free
graphs of order ≥ k + 1.
4. The notion of Kk-trees is equivalent to the concept of k-ctrees[9] and
they form a family of k-degenerate and triangle-free graphs of order
p ≥ 2k and size k(p − k).

The development in the class of H-trees is motivated by the notion
of k-trees[2, 7] or k-ctrees[9] and their applications in the area of re-
liability of communication networks, have generated much interest
from an algorithmic (or theoretical) point of view.
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Figure 1: K1,3-tree of order 8

Definition 2.3. A graph F is called a H-tree if there exists a graph H
such that F is isomorphic to G⟨H⟩.
Equivalently, a H-tree G⟨H⟩ of order ≥ k + 1, (where |H| = k) can be re-
duced to H by sequentially removing the vertices of degree k from G⟨H⟩.

For a vertex v of a graph G, a neighbour of v is a vertex adjacent to
v in G. The neighbourhood N(v) of v is the set of all neighbours of v.

The following result is a simple characterization of H-trees involv-
ing their hereditary subgraphs and is simply the restatement of Defi-
nition 2.1.

Proposition 2.4. Let H be any graph of order k. Then G is a H-tree of
order ≥ k + 1 if and only if G contains a vertex v of degree k such that
N(v) induces H in G and G − v is a H-tree.

An immediate consequence of the above result is the following
corollary.

Corollary 2.5. For any graph H of order k and size m, let G be a H-tree
of order p ≥ k. Then

1. |E(G)| = m + k(p − k).

2. G contains a subgraph isomorphic to H+2K1, provided p ≥ k+2.

3. If H has t triangles, then the number of triangles in G is t+m(p−
k).
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3. Properties and Characterizations

Definition 3.1. A graph F is called a Pk-tree (or path-tree) if there
exists a path Pk of order k such that F is isomorphic to G⟨Pk⟩.

We define similarly, a Ck-tree (or cycle-tree). Generally speaking,
every Pk (resp. Ck)-tree of order ≥ k + 1, can be reduced to Pk (resp.
Ck) by sequentially removing the vertices of degree k from Pk (resp.
Ck)-tree.

In [10], the following general open-problem is proposed for fur-
ther research.

Open Problem 1. Characterize the class of star-trees G⟨K1,n⟩ for n ≥ 2.

We now characterize path-trees G⟨Pk⟩ for k ≥ 4.

Theorem 3.2. A graph G of order p ≥ k + 1, is a Pk-tree if and only if
G is isomorphic to Pk + (p − k)K1.

Proof. Suppose that G is isomorphic to Pk+(p−k)K1. Then G contains
the vertices v1, v2, . . . , vp−k, each of degree k such that N(vi) induces Pk
in G for 1 ≤ i ≤ p − k. By repeated removal of each vertex vi from G
reduces to Pk. Hence, G is a Pk-tree.

We prove the converse by induction on p.
If p = k+1, then by the recursive definition, a Pk-tree G of order k+1,
is isomorphic to Pk + K1, which is obviously true.
Assume that the result is true for any positive integer m < p. Next,
we consider a Pk-tree of order p. By Proposition 2.4 with H = Pk,
G contains a vertex v of degree k such that N(v) induces Pk in G and
G − v is again a Pk-tree of order p − 1. By induction hypothesis, G − v
is isomorphic to Pk + (p − k − 1)K1. Consequently, G − v is the join of
two disjoint graphs : Pk and I = (p − k − 1)K1.

Suppose that v is adjacent to each vertex of Pk in G. Then the
result follows immediately. Otherwise, v is adjacent to at least one
vertex of I in G. Moreover, deg (v) = k in G. There exist two disjoint
nonempty sets : A and B such that A ⊆ Pk ; B ⊆ I with A ∪ B = N(v)
and |A| + |B| = k.(Figure 2) We discuss four cases, depending on the
cardinalities of A and B :
Case 1. |A| = k − 1 and |B| = 1. Since k ≥ 4, ⟨A⟩ contains at least one
edge, say e = xy. Then for any vertex u of B, we have a triangle uxyu
in N(v), which is not possible.
Case 2. |A| = k− 2 and |B| = 2. Immediately, we have |A| ≥ 2 ( because
k ≥ 4 ).
There are two possibilities for discussion.
2.1. Suppose that A is independent. Certainly, there are two non-
adjacent vertices x and y in A. Let us consider B = {a, b}. Immediately,
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Figure 2:

⟨{x, y, a, b}⟩ is isomorphic to C4 and it appears in ⟨N(v)⟩. This is im-
possible.
2.2. Suppose that A is non-independent. Then ⟨A⟩ contains at least
one edge. In this situation, Case 1 repeats.
Case 3. |A| = 1 and |B| = k − 1. It is easy to see that ⟨N(v)⟩ is a star
K1 + Kk−1 and this is not possible.
Case 4. |A| ≥ 2 and |B| ≥ 3.
We discuss two possibilities, depending on A :
4.1. Suppose that A is non-independent. Then Case 1 repeats.
4.2. Suppose that A is independent. Then Case 2 repeats.

In each of the above cases, we see that ⟨N(v)⟩ is not isomorphic to
Pk. This is a contradiction. �

In [7], it is shown that the notion of C3-trees are equivalent to
the family of 3-trees and it is also proved that this class of graphs
are equivalent to the family of 3-connected, triangulated and K5-free
graphs of order ≥ 4. Further, it is noticed that the graphs in the class
of C4-trees have highly irregular structure. In fact, it is hard to find a
characterization of C4-trees. We first propose the following problem
for further research.

Open Problem 2. Characterize the class of C4-trees.

The following theorem is a characterization of Ck-trees for k ≥ 5
and its proof is quite similar to that of Theorem 3.2, with the replace-
ment of Pk by Ck.

Theorem 3.3. A graph G of order p ≥ k + 1, is a Ck-tree if and only if
G is isomorphic to Ck + (p-k)K1.
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The immediate consequence of theorems 3.2 and 3.3 is the fol-
lowing corollary.

Corollary 3.4. 1. χ(G⟨Pk⟩) = 3 for k ≥ 4.

2. χ(G⟨Ck⟩) =

3 if k≥ 6 and is even.
4 if k≥ 5 and is odd.

Proposition 3.5. Let G⟨H⟩ be a H-tree of order p ≥ k + 1, where H is
either Pk ; k ≥ 4 or H is Ck : k ≥ 5.
1. G⟨H⟩ is hamiltonian if and only if p ≤ 2k.
2. G⟨H⟩ is planar if and only if p ≤ k + 2.

Proof. By theorems 3.2. and 3.3, G⟨H⟩ is isomorphic to H + (p− k)K1.
1. Assume that G⟨H⟩ is hamiltonian and on contrary, p ≥ 2k+1. Since
|V(H)| = k, we have |(p− k)K1| = k+ 1. Consider S = V(H). Then G − S
is isomorphic to (p − k)K1 and hence the number of components of
(G − S ) ≥ k + 1. This implies that G⟨H⟩ is not hamiltonian. So, p ≤ 2k.
To prove the converse, it is sufficient to obtain a Hamilton-cycle in
G⟨H⟩, where G⟨H⟩ is isomorphic to H + tK1 for 1 ≤ t ≤ k. Let
V(H) = {u1, u2, . . . , uk} and V(tK1) = {v1, v2, . . . , vt}. Since k ≥ t, we
have (k − t) = m ≥ 0. Immediately, a Hamilton cycle :
u1, u2, . . . , um+1, v1, um+2, v2, um+3, . . . , vt−1, uk, vt, u1 appears in G⟨H⟩ (Fig-
ure 3). Hence, H-tree is hamiltonian.

Figure 3: Hamilton-cycle

2. Assume that G⟨H⟩ is planar and on contrary, p ≥ k+3. Immediately,
we observe that (H + 3K1) ⊆ G⟨H⟩. Since K3,3 appears as an induced
subgraph in (H + 3K1), it follows that K3,3 appears as a forbidden sub-
graph in G⟨H⟩ and hence by Kuratowski theorem, G⟨H⟩ is not planar.
This is a contradiction to our assumption. Hence, p ≤ k + 2.
It is easy to prove the converse. �
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4. Dominations and b-coloring

For any graph G, γ(G) denotes the domination number of G. A Roman
domination function (in short, RDF) on G is a function f : V(G) →
{0, 1, 2} such that every vertex u for which f (u) = 0 is adjacent to at
least one vertex v for which f (v) = 2. The weight of this function is
f (V(G)) =

∑
u∈V(G) f (u). The minimum weight of a Roman dominating

function on G is the Roman domination number of G and is denoted
by γR(G).[3] The following result gives both the domination and Ro-
man domination numbers of path-trees and cycle-trees and its proof
is obvious.

Proposition 4.1. Let G⟨H⟩ be a H-tree of order p ≥ k + 1, where H is
either Pk for k ≥ 4 or Ck for k ≥ 5. Then

1. γ(G⟨H⟩) =

1 if p = k + 1.
2 otherwise.

2. γR(G⟨H⟩) =


2 if p = k + 1.
3 if p = k + 2.
4 otherwise.

The b-chromatic number b(G) of a graph G is the largest integer k
such that G admits a proper k-coloring in which every color class has
a representative adjacent to at least one vertex in each of the other
color classes. Such a coloring of G is a b-coloring of G[6] It is shown in
[6] that for any path Pk and a cycle Ck for k ≥ 5, b(Pk) = b(Ck) = 3.

Next, we determine the b-chromatic number of the path-trees and
cycle-trees. For this, we establish the following lemma.

Lemma 4.2. In any b-coloring of a graph H + (p− k)K1, where H is any
graph of order k and p ≥ k + 1, all the vertices of (p − k)K1 receive the
same color.

Proof. Let u1, u2, . . . , uk, be the vertices of H and let v1, v2, . . . , vp−k be
the vertices of I, where I = (p − k)K1. If p = k + 1, then |I| = 1. The
result obvious.
If p ≥ k + 2, then |I| ≥ 2. If possible, then assume that in some b-
coloring of H + I, the vertices of I receive q ≥ 2 different colors, say
c1, c2, . . . , cq. Since I is independent and each vertex of I is adjacent
to all vertices of H, it follows that there is no color dominating vertex
corresponding to the colors ci (1 ≤ i ≤ q) in H + I. This is not possible
in any b-coloring of H + I, because each color class has at least one
color dominating vertex. �

Theorem 4.3. Let G⟨H⟩ be a H-tree of order p ≥ k+1, where H is either
a path Pk for k ≥ 4 or a cycle Ck for k ≥ 5. Then
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1. b(G⟨Pk⟩) =

3 if k = 4.
4 otherwise.

2. b(G⟨Ck⟩) = 4.

Proof. By theorems 3.2, and 3.3, we have G⟨H⟩ is isomorphic to H+ I,
where I = (p − k)K1. We discuss two cases depending on k in (1) :
Case 1. Assume that k = 4. Since b(Pk) = 2 and from Lemma 4.2, all
the vertices of I receive a single color, it follows that b(G⟨Pk⟩) ≤ 3.
To achieve the lower bound, color Pk properly by using the colors 1
and 2 and next, assign the color 3 to each vertex of I. Thus, we have
b(G⟨Pk⟩) = 3.
Case 2. Assume that k ≥ 5. Since it is shown in [6] that b(Pk) = 3 and
all the vertices of I receive a single color, it follows that b(G⟨Pk⟩) ≤ 4.
To achieve the lower bound, color Pk properly by all three colors 1,
2 and 3 and next, assign color 4 to each vertex of I. Thus, we have
b(G⟨Pk⟩) = 4.
For (2), since b(Ck) = 3 and all the vertices of I receive a single color,
it follows that b(G⟨Ck⟩) ≤ 4. To achieve the lower bound, color Ck
properly by using all three colors 1, 2, 3, and next, assign the color 4
to each vertex of I. Thus, we have b(G⟨Ck⟩) = 4. �

5. Line graphs and path (or cycle)-trees

In this section, we determine all the graphs, whose line graphs are
either Pk-trees or Ck-trees for k ≥ 3. We begin with the definition
of line graph. The line graph L(G) of a graph G, is the graph whose
vertex set is the edge set of G and in which two vertices are adjacent,
if the corresponding edges are adjacent in G.[5] Beineke [5, p.75] has
shown that a graph is a line graph if and only if it has none of nine
specified graphs as induced subgraphs, including K1,3, (K1 ∪ K2) +
2K1 and (C5 + K1). The problem of obtaining all the graphs, whose
line graphs are Pk-trees for 1 ≤ k ≤ 2, is already done in [8, 9] and
therefore, we solve the problem for k ≥ 3.

Proposition 5.1. A Pk-tree of order p ≥ k + 1 ; k ≥ 3, is the line graph
of a graph G if and only if both the following conditions hold:
1. k = 3 ; G is either (K2 + 2K1) or a triangle with exactly one end-edge
at some vertex.
2. k = 4 ; G is a triangle with exactly two end-edges, one at some
vertex.

Proof. We first show that G is connected. If not, then L(G) is discon-
nected and by Definition 2.1 with H = Pk, L(G) is not a Pk-tree. This
is a contradiction. Since L(G) is a Pk-tree of order p ≥ k + 1 and k ≥ 3,
by Theorem 3.2, Pk-tree T is isomorphic to Pk + (p − k)K1. Suppose
k ≥ 5. Then T contains a subgraph F isomorphic to P5 + K1. Since
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F ⊆ T and T is L(G), immediately a forbidden subgraph isomorphic
to K1,3 appears in L(G). This is impossible and it shows that k ≤ 4.
Thus, either k = 3 or k = 4.
Case 1. Assume that k = 3. Further, we observe that p ≤ 5 ; since oth-
erwise, P3+3K1 appears in T and L(G) contains a forbidden subgraph
K1,3.

We discuss two possibilities depending on p.
1.1. If p = 4, then L(G) = P3 + K1 and hence G is isomorphic to
triangle with exactly one end-edge at some vertex.
1.2. If p = 5, then L(G) = P3 + 2K1 and therefore, G is isomorphic to
K2 + 2K1.
Case 2. Assume that k = 4. Moreover, we observe that p = 5; since
otherwise, P4 + 2K1 appears in T and L(G) contains a forbidden sub-
graph isomorphic to (K1 ∪ K2) + 2K1. Since k = 4 and p = 5, it follows
that L(G) = P4 + K1 and hence G is isomorphic to a triangle with
exactly two end-edges, one at some vertex.

It is easy to prove the converse. �

Finally, we determine all the graphs whose line graphs are Ck-trees
for k ≥ 3. However for k = 3, this problem is solved in [8] and now
we solve this problem, for k ≥ 4.

Proposition 5.2. There are only two graphs whose line graphs are Ck-
trees for k ≥ 4. These graphs are K2 + 2K1 and K4.

Proof. Suppose that L(G) is a Ck-tree of order p ≥ k+1 ; k ≥ 4. Clearly,
G is connected. Assume that k ≥ 5. Then p ≥ 6 and immediately,
L(G) contains a subgraph F isomorphic to Ck + K1. There are two
possibilities, depending on k :
1. If k = 5, then F = C5 + K1 is a forbidden subgraph of L(G).
2. If k ≥ 6, then F contains a forbidden subgraph isomorphic to K1,3.

In either case, we arrive at a contradiction. Hence, k = 4. Fur-
thermore, we observe that p ≤ 6 ; since otherwise, L(G) contains a
subgraph F isomorphic to C4 + 3K1. It is easy to check that a forbid-
den subgraph isomorphic to K1,3 appears in F and hence in L(G).

Next, we discuss two possibilities depending on p.
1. If p = 5, then L(G) = C4 + K1 and hence G = K2 + 2K1.
2. If p = 6, then L(G) = C4 + 2K1 and hence G = K4. �

6. Relation between Pk-trees and split graphs

A nonempty subset S of V(G) is an independent set I(G) in a graph G if
no two vertices of S are adjacent in G. A nonempty subset K of V(G)
is a complete set K(G) in G if every two vertices of K are adjacent in G.
The concept of a split graph appears in [4]. A split graph is defined
to be a graph G, whose vertex set V(G) can be partitioned into a
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complete set K and an independent set I such that G = (K ∪ I∪ (K, I)),
where (K, I) denotes a set of edges xy for x ∈ K and y ∈ I. Notice that
the partition V(G) = K∪ I of a split graph G will not be unique always.
Let us denote a split graph G with its bipartition (K, I) by G(K, I). In
[4, Theorem 6.3], it is proved that a graph G is a split graph if and
only if G contains no induced subgraph isomorphic to 2K2,C4 or C5.

Now, we obtain the conditions under which Pk-trees to be the split
graphs. We begin with the following definitions.

Definition 6.1. A double-star D(m, n) for m, n ≥ 1 ; is a tree, obtained
from a complete graph K2, by joining m isolated vertices to one end of
K2 and n isolated vertices to the other end of K2.

Definition 6.2. For any triangle K3 with vertices a, b and c, there are
three special families of K2-trees as follows :

1. A m-graph for m ≥ 1, denoted by T (m), is a K2-tree, obtained from
K3, by joining m isolated vertices to both a and b of K3.

2. A (m, n)-graph for m, n ≥ 1, denoted by T (m, n), is a K2-tree, obtained
from T (m), by joining n isolated vertices to both b and c of K3 in T (m).

3. A (m, n, k)-graph for m, n, k ≥ 1, denoted by T (m, n, k), is a K2-tree,
obtained from T (m, n), by joining k isolated vertices to both a and c of
K3 in T (m, n).

Proposition 6.3. A Pk-tree of order p ≥ k + 1, is a split graph if and
only if the following statements hold:
1. k = 1. There are only two split graphs:
a) G(K1, K̄p−1) is a star K1 + ¯Kp−1.
b) G(K2, K̄p−2) is a double-star D(m, n), where (m+ n+ 2) = p ; m, n ≥ 1.

2. k = 2. There are only two split graphs:
a) G(K2, K̄p−2) is a K2-tree K2 + K̄p−2.
b) G(K3, K̄p−3) is one of the following three K2-trees : T (n1) for n1 + 3 =
p ; T (n1, n2) for n1 + n2 + 3 = p and T (n1, n2, n3) for n1 + n2 + n3 + 3 = p.

3. k = 3. Either G(K2, K̄2) or G(K3,K1) is a P3-tree P3 + K1.
4. k = 4. G(K3, K̄2) is a P4-tree P4 + K1.

Proof. Suppose that a Pk-tree of order p ≥ k+ 1, is a split graph of the
form : G(K, I). Immediately, k ≤ 4 ; since otherwise, 2K2 appears as a
forbidden subgraph in Pk.
We discuss three cases, depending on k.
Case 1. Assume that k = 1. Then Pk is K1. Clearly, a Pk-tree T is
a nontrivial tree. In this case, the star K1 + K̄p−1 and double- stars
D(m, n) with (m + n = p − 2 ; m, n ≥ 1), are the only split graphs of the
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form: G(K1, K̄p−1) and G(K2, K̄p−2), respectively; since otherwise, 2K2
appears immediately as a forbidden subgraph in T .
Case 2. Assume that k = 2. Then Pk is K2. Clearly, the notion of
K2-tree is equivalent to the notion of 2-tree.[7] By (3) of Remark 2.2
(with k = 2), a K2-tree T is 2-connected, triangulated and K4-free.
Consequently, the complete sets K in T are the only K2 and K3.
Next, there are two possibilities to discuss on K.
2.1. If K = K2, then T is isomorphic to K2 + K̄p−2, is the split graph of
the type: G(K2, K̄p−2).
2.2. If K = K3, then one of the following types of K2-trees : T (n1),
with n1 + 3 = p ; T (n1, n2) with (n1 + n2 + 3) = p and T (n1, n2, n3) with
(n1 + n2 + n3 + 3) = p, is a split graph of the form: G(K3, K̄p−3).
Case 3. Assume k such that (3 ≤ k ≤ 4). Since k ≥ 3, Pk contains P3
as an induced subgraph. By (2) of Corollary 2.5, a Pk-tree of order
p ≥ k + 2, contains a subgraph isomorphic to Pk + K̄2. Immediately, a
forbidden subgraph C4 appears in P3 + K̄2 and hence, in Pk + K̄2. This
is a contradiction and hence proves that p = k + 1. Now, we discuss
two possibilities.
3.1. k = 3. Then both K3 and K4 are the complete sets in a P3-tree of
order 4. This shows that P3-tree P3 + K1 is a split graph either of the
type: G(K2, K̄2) or G(K3,K1).
3.2. k = 4. Then K3 is the only complete set in a P4-tree of order 5.
This shows that P4-tree P4 + K1 is a split graph of the type G(K3, K̄2).

It is easy to prove the converse. �

Open Problem 3. Determine the conditions under which the Ck-trees
for k ≥ 3, are the split graphs.
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