ISSN 0975 3303
MIS, Vol.1, No. 2, Dec.-2002 - April 2003 pp. 69-81
https.//doi.org/10.12725/mjs.2.7

Rational Unified Process Part - ||

Best Practices for Software Development Team

Manoj Tharian*

Business Modeling

One of the major problems with most business engineering efforts, is that the
software engineering and the business engineering community do not communicate
properly with each other. This leads to that the output from business engineering is
not used properly as input to the software development effort, and viceversa. The
Rational Unified Process addresses this by providing a common language and
process for both communities, as well as showing how to create and maintain
direct raceability between business and software models.

In Business Modeling we document business processes using so called business
use cases. This assures a common understanding among all stakeholders of what
business process needs fo be supporied in the organization. The business use
cases are analyzed to understand how the business should support the 10 business
processes. This is documented in a business object-model.

Many projects may choose not to do business modeling.

Requirements

The goal of the Requirements workflow is fo describe what the system should do
and allows the developers and the customer to agree on that description. To achieve

* Director Micro Genesis Tech Soft, 20, T st Cross, Vasonthnagar, Bangolore- 560 052, INDIA,
email: manoj.tharion@mgenindic.com

69

this, we elicit, organize, and document required functionality and constraints; track
and document tradeoffs and decisions.

A Vision document is created, and stakeholder needs are elicited. Actors are
identified, representing the users, and any other system that may interact with the
system being developed. Use cases are identified, representing the behavior of the
system. Because use cases are developed according to the actor’s needs, the
system is more likely fo be relevant to the users. The following figure shows an
example of a use-case model for a recycling-machine system,

Print Dally Report ™,

Customer ~ Recyols ltems /pommr

Mminl:lar Dapesit Item

An example of o use-case maodel with aclors and use cases.

Each use case is described in detail. The use-case description shows how the
system interacts siep by step with the actors and what the system does. Non-
functional requirements are described in Supplementary Specifications.

The use cases function as a unifying thread throughout the system'’s development
cycle. The same use-case model is used during requirements capture, cnclysns &
design, and fest.

Analysis and Design

The goal of the Analysis and Design workflow is to show how the system will be
realized in the implementation phase. You want to build a system that:

* Performs—in a specific implementation environment—the tasks and functions
specified in the usecase descriptions.

* Fulfills oll its requirements.

* lIssiructured to be robust {easy to change if and when its functional requirements
change).

Analysis and Design results in o design model ond optionally an analysis model.

The design model serves as an abstraction of the source code; that is, the design
model acts as a ‘blueprint’ of how the source code is structured and written,

70

The design model consists of design classes structured into design packages and
design subsystems with well-defined interfoces, representing what will become
components in the implementation. it also contains descriptions of how objects of
these design classes collaborate fo perform use cases. The next figure shows part of
a sample design model for the recycling-machine system in the use-case model
shown in the previous figure.

Cunlumerpm:ﬁ.g—al AMlarm and Prinling Pochoei

N
'IO
Deposit item Alarm Device
Receiver

Cusiomar Pone! 7 Receipt Printer

Part of a design model with communicating design classes, ond package group design classes.

The design activifies are centered around the notion of architecture. The production
and validation of this architeciure is the main focus of early design iterations.
Architecture is represented by a number of architectural views {9}. These views
capture the major structural design decisions. In essence, architectural views are
abstractions or simplifications of the entire design, in which important characteristics
are made more visible by leaving details aside. The architecture is an important
vehicle not only for developing a good design model, but also for increasing the
quality of any model built during system development.

Implementation

The purpose of implementation are:

* To define the organization of the code, in terms of implementation subsystems
organized in layers.

* Toimplement classes and objects in terms of components (source files, binaries,
executables, and others).

* Totest the developed components as units.

» Tointegrate the results produced by individual implementers {or 1eums) into
an executable system.

71

The system is realized through implementation of components. The Rational Unified
Process describes how you reuse existing componenis, or implement new
components with well defined responsibility, making the system easier to maintain,
and increasing the possibilities to reuse.

Components are structured into Implementation Subsystems. Subsystems take the
form of directories, with additional structural or management information. For
example, a subsystem can be created as a directory or a folder in o file system, or
a subsystem in Rational/Apex for C++ or Ada, or packages using Java, ™

Test

* The purposes of testing are:

* Toverify the interaction between objects.

* To verify the proper integration of all components of the software.
* Toverify that all requirements have been correctly implemented.

¢ To identify and ensure defects are addressed prior to the deployment of the
software.

The Rational Unified Process proposes on iterative approach, which means that
you test throughout the project. This allows you to find defects as eorly as possible,
which radically reduces the cost of fixing the defect. Test are carried out along three
quality dimensions reliability, functionality, application performance and system
performance. For each of these quality dimensions, the process describes how you
go through the test lifecycle of planning, design, implementation, execution and
evaluation,

Strategies for when and how to automate test are described. Test automation is

especially important using an iterative approach, to allow regression testing at then
end of each iteration, as well as for each new version of the product.

Deployment

The purpose of the deployment workflow is to successfully produce product releases,
and deliver the software to its end users. It covers a wide range of aclivities including:

* Producing external releases of the software.

72

* Packaging the software.

* Distributing the software.

* Installing the software.

* Providing help and assistance to users,

In many cases, this also includes ocﬁviﬁe; such as:
* Planning and conduct of beta tests.

* Migrotion of existing software or data.

* Formal acceptance.

Although deployment activities are mostly centered around the transition phase,
many of the activities need o be included in earlier phases fo prepare for deployment
at the end of the construction phase.

The Deployment and Environment workflows of the Rational Unified Process contain
less detail than other workflows.

Project Management

Software Project Management is the art of balancing competing objectives, managing
risk, and overcoming constraints to deliver, successfully, a product which meets the
needs of both customers (the payers of bills) and the users. The fact that so few
projects are unarguably successful is comment enough on the difficulty of the fask.

This workflow focuses mainly on the specific aspect of an iterative development
process. Our goal with this section is to make the task easier by providing:

+ Aframework for managing software-intensive projects.
* Pradtical guidelines for planning, staffing, executing, and monitoring projects.

* Aframework for managing risk.

It is not @ recipe for success, but it presents an approach to managing the project
that will markedly improve the odds of delivering successful software. [14]

73

Configuration and Change Management

I this workflow we describe how fo control the numerous artifacts produced by the
many people who work on a common project. Control helps avoid costly confusion,
and ensures that resultant artifacts are notin conflict due to some of the following
kinds of problems: '

¢ Simultaneous Update % When two or more workers work separately on the
same artifact, the last one to make changes destroys the work of the former.

* Limited Notification % When a problem is fixed in artifacts shared by several
developers, and some of them are not notified of the change.

* Multiple Versions % Most large programs are developed in evolutionary releases.
One release could be in customer use, while another is in test, and the third is
still in development. If problemsare found in any one of the versions, fixes
need to be propagated between them. Confusion can arise leading to costly
fixes and re-work unless changes are carefully controlled and monitored.

This workflow provides guidelines for managing multiple variants of evolving sofiware
systems, tracking which versions are used in given software builds, performing
builds of individual programs or entire releases according to user-defined version
specifications, and enforcing site-specific development policies.

We describe how you can manage parallel development, development done at
muttiple sites, and how to automate the build process. This is especially imporiant
in an iterative process where you may want fo be able to do builds as often as daily,
something that would become impossible without powerful automation. We also
describe how you can keep an audit trail on why, when and by whom any arifact
was changed.

This workflow also covers change request management, i.e. how to report defects,

manage them through their lifecycle, and how to use defect data to track progress
and trends.

Environment
The purpose of the environment workflow is fo provide the software development

organization with the software development environmeni—both processes and
tools-~that are needed to support the development team.

74

This workflow focuses on the activities fo configure the process in the context of
project. It also focus on activities to develop the guidelines needed to support @
project. A step-by-step procedure is provided describing how you implement o
processin an organizafion.

The environment workflow also contains a Development Kit providing you with the
guidelines, templates and tools necessary to customize the process. The Development
Kit is described in more detail in the section “ Development Kit for Process
Customization” found later in this paper.

Certain aspects of the Environment workflow are not covered in the process such
as selecting, acquiring, and making the tools work, and mainfaining the development
environment. ‘

Rational Unified Process - The Product

The Rational Unified Process product consists of:

* Aweb-enabled searchable knowledge base providing all leam members with
guidelines, templates, and tool mentors for all critical development activities.
The knowledge base can further be broken down to:

* Extensive guidelines for all team members, and all portions of the software
lifecycle. Guidance is provided for both the high-level thought process, as
well as for the more tedious day-to-day activities. The guidance is published
in HTML form for easy platform-independent access on your desktop.

* Tool mentors providing hands-on guidance for tools covéring the full fifecycle.
The tool mentors are published in HTML form for easy platform-independent
access on your desktop. See section “Integration with Tools” for more details.

* Rdtional Rose® examples and templates providing guidance for how tostructure
the information in Rational Rose when following the Rational Unified Process
(Rational Rose is Rational’s tool for visual modeling)

* SoDA® templates ¥ more than 10 SoDA templates thot helps automate
software documentofion (SoDA is Rational’s Document Automation Tool)

* Microsoft® Word templates % more than 30 Word templates assisting
documentafion in alt workflows and all portions of the lifecycle

75

* Microsoft Project Plans % Many managers find it difficult to creafe project
plans that reflects an iterative development approach. Our templates jump
start the creation of project plans for iterative development, according to the
Rational Unified Process. ‘

+ Development Kit % describes how to customize and extend the Rational Unitied

. Process to the specific needs of the adopting organization or project, as well

as provides tools and templates fo assist the effort. This development kit is
described in more detail later ini this section.

e Access to Resource Center containing the latest white papers, updates, hints,
- and techniques, as well as references to add-on products and services.

¢ Abook “Rational Unified Process — An Introduction”, by Philippe Kruchten,
published by Addison-Wesley. The book is on 277 pages and provides a
good introduction and overview fo the process and the knowledgebase.

Navigating the Knowledge Base

The Rational Unified Process knowledge allows you to access the content with any
of the popular web browsers, such as Microsoft” Internet Explorer and Netscape
Navigator,

With the Rafional Unified Process, you're never more than a few mouse clicks away
from the information you want. The knowledge base contains a lot of hypertext
inks, and overviews of the various process elements are presented through interactive
images, making it easy to find relevant information in an intuitive fashion. The
powerful search engine, the index, and the “explorer looking” tree browser make it
easy to use the process. Navigational butions allow you fo move to the next or
previous page as if reading o book.

Information is presented in many different views, allowing you to look at information

- relevant to your role, fo a specific activity, or to a workflow. Guided tours for easy
Jearning of the process are provided for key project roles.

76

: Lusntyvdne

i oy e rocs SodR1g
H Thogaarts i

! G Wiaestikn

H Teg,

B DrsiikeRiony =

! ugirvioek :
H g*.ﬁwlmm}éc{w\: &
i PeanI Wb ig e |
- tiion AR
IS N TV
et .
F‘Dlllm
;':mm;mm
M7 L
T s giatin .
iy S R H
M ey o |
1 W Ay i
iy R H
beA masiaste CRar
LgAax.

. ﬁu.!;nua-u ot

MRpsa | R !

Interactive images and navigational buttons make it easy to find the
specific information you are losking for.

Development Kit for Process Customization

The Rational Unified Process is general and complete enough to be used “as is” by
some software development organizations. However in many circumstances, this
software engineering process will need to be modified, adjusted, and tailored to
accommodate the specific characteristics, constraints, and history of the adopting
organization. In particular a process should not be followed blindly, generating
useless work, producing artifacts that are of little added valuve. [t must be made as
lean as possible and still be able to fulfill its mission to produce rapidly and
predictably high quality software.

The process contains o Development Kit, which contains guidelines for how you
con customize the process fo fit the specific needs of the adopting organization or

~ project. Templates are also included for process authoring, as well as tools for
generation or manipulation of search engine, index, site map, tree browser, etc.
The Development Kit enables the customizing organization to maintain the look
and feel of ihe Rational Unified Process.

The more the process is customized, the more difficult will it be to move over
customizations to future releases of the process. The Development Kit describes

77

strategies, tools and fechniques to minimize the work associated with moving
customizations to future releases.

ln’regra‘ribn with Tools

A software-engineering process requires tools fo support all activities in a system’s
lifecycle, especially to support the development, maintenance and bookkeeping of
various arlifacts—models in particular. An iterative development process puts speciol
requirements on the tool set you use, such as better integration among tools and
round-trip engineering between models and code. You also need tools to keep
track of changes, to support requirements fraceability, to automate documentation,
as well as tools to automate tests to facilitate regression test. The Rational Unitied
Process can be used with a variety of tools, either from Rational or other vendors.
However, Rational provides many well-integrated tools that efficiently support the
Rational Unified Process.

Below you find a list of some of Rational’s tools that support the Rational Unified
Process.

The Rational Unified Process contains Tool Mentors for almost all of these products.
A Tool Mentor is a step-by-siep guide describing in detail how to operate a tool,
{i.e. what menus to launch, what information to enter into dialog boxes, and how
to navigate a tool) to carry out an activity within the process. The Tool Mentors
allow us to link the tool-independent process to the actual manipulation of the
tools in your daily work.

* Rational Requisite@Pfo % Keeps the entire development team updated and
on track throughout the application development process by making
requirements easy to write, communicate and change.

* Rational ClearQuest™ — A Windows and Web-based change-request
management product that enables project teams to track and manage all
change activities that occur throughout the development lifecycle.

. Rational Rose® 98 — The world’s leading visual modeling tool for business
process modeling, requirements analysis, and component architecture design.

+ Rational SoDA® ¥% Automates the production of documentation for the
entire software development process, dramatically reducing documentation
time and costs. '

* Rational Purify® % A run-time error checking tool! for application and component
_ software developers programming in C/C+ +; helps detect memory errors.

78

* Rational Visual Quontify™ — An advanced performance profiling tool for
application and component software developers programming in C+ +, Visual
Basic, and Java; helps eliminate performance bottlenacks.

* Rational Visual PureCoverage™ — Automatically pinpoints areas of code not
exercised in testing so developers can thoroughly, efficiently and effectively test
their applications.

* Rational TeamTest — Creates, maintains and executes automated functional
tests, allowing you to thoroughly test your code and determine if your software
meets requirements and performs asexpected.

* Rational PerformanceStudio™ — An easy-to-use, accurate and scalable tool
that measures and predicts the pedformance of client/server and Web systems,

* Rational ClearCase® — Market-leading software configuration management
tool, giving project managers the power to track the evolution of every software
development project.

A brief history of the Rational Unified Process

The Rational Unified Process has matured over many years and reflects the collective
experience of the many people and companies that make up today Rational Sofiware’s
rich heritage. Let us have a quick look at the process’s ancestry, as illustrated in the
figure below.

: Object
Performance g) gec;;r:
1998 Testing Rational Unifled _
Business Process 5.0 - Qals.
Engineering Engineering

Configuration &
1997 change Mgmit.

Requiremetns 4

T

Rational Objectory
Process 4.1

l\ UML1.2
SQA
K Process

UML1.0

College T
1996 Pational Objectory
OMT/ Process 4.0 \ UML.0.8
Booch ’ &
1995 Rational Objectory
Approach Process 3.8

T

Genealogy of the Rational Unified Process

79

Going backwards in time, the Rational Unified Process is the direct successor to
the Rational Objectory Process (version 4). The Rational Unified Process
incorporates more material in the areas of date engineering, business modeling,
project management, and configuration management, the latter as a result of the
merger with Pure-Atria. It also brings a tighter infegration o the Rational Software
suite of tools.

The Rational Objectory Process was the result of the integration of the “Rational
Approach” and the Objectory process (version 3), after the merger of Rational
Sofiware Corporation and Obijectory AB in 1995, From its Objectory ancestry, the
process has inherited its process structure and the central concept of use case.
From its Rational background, it gained the current formulation of iterative
development and architecture. This version also incorporated material on
requirements management from Requisite, Inc. and a detailed test process inherited
from SQA,® Inc., companies which also merged with Rational Software. Finally,
this process was the first one to use the newly created Unified Modeling Language
(UML 0.8).

The Objectory process was created in Sweden in 1987 by Ivar Jacobson as the
result of his experience with Ericsson. This process became a product at his company,
Obijectory AB. Centered around the concept of use case and an object-oriented
design method, it rapidly gained recognition in the sofiware industry and has been
adopted and integrated by many companies worldwide. A simplified version of the
Objectory process was published as a text book in 1992.

The Rational Unified Process is a specific and detailed instance of o more generic
process described by Ivar Jacobson, Grady Booch, and James Rumbaugh in the
textbook, The Unified Software Development Process.

References

1. Barry W. Boehm, A Spiral Model of Software Development and Enhancement, Computer,
Moy 1988, IEEE, pp.61-72

2. Barry W. Boehm, Anchoring the Software Process, IEEE Software, 13, 4, July 1996, pp. 73-
82. :

3. Grady Booch, Object Solutions, Addison-Wesley, 1995.

4, Grady Booch, Ivar Jacobson, and Jumes Rumbaugh, Unified Modeling Longuage 1.3,
White paper, Rational Software Corp., 1998.

5. Alan W. Brown (ed.), Component-Based Software Engineering, IEEE Computer Society, Los
Alamitos, CA, 1996, pp.140.

g0

13.
14,

Michael T. Devlin, and Walker E. Royce, Improving Software Economics in the Aerospace
and Defense Industry, Technical paper TP-46, Santa Clara, CA, Rational Software Corp.,
1995

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar C")vergam"d, QObiect-
Oriented Software Engineering—A Use Case Driven Approach, Wokingham, England,
Addison-Wesley, 1992, 582p.

Ivar Jacobson, M. Griss, and P Jensson, Software Reuse—Architecture, Process and
Organization for Business Success, Harlow, England, AWL, 1997,

Philippe Kruchten, The 441 View Model of Architecture, IEEE Software, 12 (6), November
1995, IEEE, pp.42-50.

Philippe Kruchten, A Rational Development Process, CrossTalk, 9 (7), STSC, Hill AFB, UT,
pp)1-14,

Ivar Jacobson, Grady Booch, and Jim Rumbaugh, Unified Software Development Process,
Addison- Wesley, 1999,

Grody Booch, Jim Rumbaugh, and Ivar Jacobson, Unified Modeling Language—User's
Guide, Addison-Wesley, 1999.

Phifippe Kruchten, Rational Unified Process—An Iniroduction, Addison-Wesley, 1999.

Walker Royce, Software Project Management—A Unified Framework, Addison-Wesley,
1998,

81

