MJS, Vol. 2, No. 1, May 2003 - Oct. 2003 pp39-42

the second of the second by the second of the second

ISSN 0975-3311

https://doi.org/10.12725/mjs.3.4

A NOTE ON THE ESTIMATION OF THE AGE OF A GALTON - WATSON PROCESS

* G.Nanjundan

Abstract

This note discusses the estimation of the age of a Galton-Watson branching process using an estimating equation. An asymptotic property of the derived estimator is established.

INTRODUCTION

Let a population behave like a Galton-Watson branching process $\{; n^30, X0=1\}$ with the offspring distribution $\{pk; k^30\}$. Suppose that the generation size $\{Xn=k\}$ is observed and the age, in generations, is to be estimated. Such a problem might be encountered in many situations. For example, one might be interested in the existence of a certain species in its present form or how long ago a mutation took place.

When the generation size is observed and the offspring distribution is completely known, a likelihood function is given by

$$L(n,k) = P(X_n = k | X_n > 0)$$

^{*} Department of Statistics, Bangalore University, Jnanabharathi, Bangalore - 560 056

$$=\frac{f_n^{k}(0)}{k![1-f_n(0)]}$$

where $f_n(s)$ is the n^{th} functional iterate of the offspring probability generating function (p.g.f.)

$$f(s) = \sum_{k=0}^{\infty} p_k s^k$$

|s| < 1 and $f_a^{(k)}$ denotes the kth derivative of $f_a(s)$ w.r.t. s.

Stigler (1970), the first to discuss the problem of estimating the age of a Galton-Watson process, obtained the maximum likelihood estimate (m.l.e.) of n when the offspring p.g.f. is a fractional linear generating function

$$f(s) = 1 - \frac{b}{1 - c} + \frac{bs}{1 - cs}, |s| < 1$$

which includes the p.g.f. of geometric distribution. Crump and Howe (1972) proposed non-parametric estimates of n in the supercritical case i..e., when the offspring mean m = f (1) > 1. Hwang and Hwang (1972) developed a numerical procedure to obtain the m.l.e. of n when the offspring distribution is Poisson. Ades et al. (1982) obtained a recurrence formula to compute P(Xn = k), $k = 1,2,3,\ldots$ when the offspring p.g.f. satisfies the functional equation (c+ds)f (s) = a + bf(s), where a,b,c, and d are constants. Also, they developed a procedure to obtain the m.l.e. of n numerically when the offspring distribution is negative binomial. Motivated by their method, Nanjundan (1985) and Nanjundan and Hanumantharayappa (1998) obtained numerically the m.l.e. of n when the offspring distribution is respectively binomial and Poisson.

It is worth noting that Stigler (1970) has established that the knowledge of additional generations does not improve the estimate.

ESTIMATING EQUATION

Let $\{X_n; n \ge 0, X_0 = 1\}$ be a Galton-Watson branching process with the offspring

mean
$$m = \sum_{k=1}^{\infty} kp_k$$
. Then, it can easily be verified that $\frac{X_n}{m^n} - 1 = 0$ is an

unbiased estimating equation in the sense of Godambe (1976). In the super

critical case, this unbiased estimating equation leads to the estimate $\hat{n} = \frac{log X_n}{log m}$

Note that the offspring distribution is to be completely known to compute the estimates of n mentioned above while it is enough if m is known to compute this estimate.

Since the estimate is based on the size of a single generation, it is too much to ask for the optimal properties. But it can be shown that \hat{n} is strongly a - consistent.

An estimate θ of a parameter θ is said to be α -consistent if, for

$$\alpha > 0$$
, $\frac{\widehat{\theta} - \theta}{\theta^{\alpha}} \rightarrow 0$, as $\theta \rightarrow \infty$. This definition is due to Feldman and Fox (1968).

When m > 1 and $E(X_1 log X_1) < \infty$, Stigum (1966) has shown that

$$\frac{X_n}{m^n} \xrightarrow{a.s.} W \text{, as } n \to \infty \text{, conditionally on } X_n > 0 \text{, where W is a non-negative}$$

random variable. Here,
$$n-n = \frac{\log X_{n-n} \log m}{\log m}$$

$$= \frac{\log(X_n/m^n)}{\log m} \xrightarrow{\text{a.s.}} \frac{\log W}{\log m}, n \to \infty,$$

conditionally on $X_0 > 0$, which in turn implies that

$$\frac{n-n}{n^{\alpha}} \xrightarrow{a.s.} 0, n \to \infty \text{ And hence, is a strongly a-consistent estimate of n for}$$

any $\alpha > 0$

Acknowledgement

The author is grateful to Prof.S.M.Manjunath for his useful suggestions.

REFERENCES

- Ades, M, Dion, J.P., Labelle, G, and Nanthi, K. (1982). Recurrence formula and the maximum likelihood estimation of the age in a simple branching process, J. Appl. Prob., 19, 776-84.
- Crump, K.S. and Howe, R.B. (1972). Non-parametric estimation of the age of a Galton-Watson branching process, Biometrika, 59, 533-38.
- Feldman, D. and Fox, M. (1968). Estimation of the parameter n in the binomial distribution,
 J. Amer. Stat. Assoc., 63, 150-159.
- Godambe, V.P. (1976). Conditional likelihood and unconditional optimum estimating equations, Biometrika, 63, 277-284.
- Hwang, T.Y. and Hwang, J.T. (1978). Maximum likelihood estimate of the age of a Galton-Watson process with Poisson offspring distribution, Bull. Inst. Acad. Sinica., 203-13.
- Nanjundan, G. (1985). On the estimation of the age of a Galton-Watson branching process, MPhil Dissertation, Annamalai University.
- Nanjundan and Hanumantharayappa (1998). The maximum likelihood estimation of the age of a Galton-Watson process, Vignana Bharathi, 14, No.1., 91-99.
- 8) Stigler, S.M. (1972). Estimating the age of a Galton-Watson branching process, Biometrika, 57, 505-12.
- Stigum, B.P. (1966). A theorem on the Galton-Watson process, Ann. Math. Statist. 37,695 - 698.