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STEADY PLANE MHD FLOWS THROUGH
POROUS MEDIA IN THE
MAGNETOGRAPH PLANE

C.S. Bagewadi* and S. Bhagya™*

Abstract

We obiain solutions for steady plane MHD flow through porous media when
velocity and magnetic veciors are constantly and variably inclined and the
magnitude of the magnetic vector is constant on each individual stream fine in
the magnetograph plane. It is shown that the path of magnetic and velocity
vectors are circles congruency to eoch other. Also flow analysis is carried out by
writing the expression of Legendre transformation in polar co-ordinates. It is shown
that solutions obtained agree with the graphs.

Key words : Stream line, Magnetic line, Legendre transformation, Magnetograph
plane.

1. Introduction

Flow of a viscous liquid in o porous medium is of great and increasing
importance in the study of percolation through soils in hydrology, petroleum
industry and in agricultural engineering. The flows in porous media generally
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involve extensively low Reynolds numbers and such flows are called Darcy flows.
Such flows are valid under several limitations. It is shown that it can be possibly
valid only in a certain seepage velocity domain outside which more general equations
may be used to describe the flow. This happens because initial effects become
important. Also the flow through porous boundaries is of great importance both in
technological as well as bio-physical fields, examples of which are soil mechanics,
transpiration cooling, food preservation, cosmetic industry, blood flow and artificial
dialysis. In recent years the problem of fluid flow past porous media or in channels
with mass transfer, heat transfer have gained more importance because of varied
application, For example, .V.fluid containers made of PYC are commeonly used
these days. Water from inside permeates out thus increasing the concentration of
drug inside and sometimes becoming hazardous to life. Therefore, the study relating
to suction or injection is very important: The early researchers considered the blood
to be a Newtonian fluid but being @ suspension of cells it behaves as a non-

Newtonian fluid ot low shear rates in small arteries.

O.R Chandna and his co-workers [1,3,10,14,15] have published a series of papers
on plane incompressible MHD flow of a viscous fluid. They have obtained solutions
for these flows by fransforming the basic equations from cartesion plane to velocity
plane by using Legendre transformation. K.K. Singh & D.P Singh (8] studied the
solutions in variably inclined MHD plane flows in porous media. C.S. Bagewadi
and Siddabasappa [6];7],[9],[1 1],[12] extended the work of above authors and
published a series of papers on MGD flow, EMFD flow and Roiating MHD flow .
They have obtained solutions for these flows by transforming the basic equations
from cartesion plane to velocity and magnetograph planes. These methods infact
help to study the flows in @ more general way by the use of Jacobian matrix.
Yamamofa [4},[13] examined the flow past porous bodies by applying the generalised
law using the generalised momentum equations. Ram and Mishra [2] have studied
the unsteady MHD flow of fluid through o porous medium in a circular pipe under
action of a consant pressure gradient.

In the present paper, we study MHD flow of a viscous incompressible fluid of infinite
electrical conductivity through porous media when (i) angle between V.and H is
constant (i) the magnitude of magnetic vector is constant on each individual
magnetic line in the magnetograph plane. tn the 2nd section basic equations are
written and are decomposed in the carfesion plane. The 3rd section deals with
some preliminaries about magnetograph plane. In the 4th section equations written
in cartesion plane for constantly inclined flows are recast into magnefograph plane
and flow analysis is carried out. In the 5th section the equations for MHD flow
when the magnitude of the magnetic lines are constant are recast in the
magnetograph plane and flow analysis is carried. The results obtained in our




paper are entirely different and infact extensions from the results obtained by the
above authors. Hence our resuls are superior to the results obtained by the above
authors. Also various graphs are plotted and it is concluded that these graphs
agree with the theoritical results obtained.

2. BASIC EQUATIONS

The steady MHD flow of a viscous incompressible fluid of infinite elecirical conductivity
through porous media is governed by [8]. )

div V=0 ”

oliv.gradV]=-gradP+1v2y+uIXH- (w/KV | o 2
Curl (VXH)=0 (3)
divH =0 L

where V is the Velocity vector, H is the Magnetic field vector, P is the Pressure
function, r is the Constant density, 77 is the Constant co-efficient of Viscosity,  is the
Constant magnetic permeability, K is the Permeability of the medium and J is the
Current densify,

We consider the flow fo be the two dimensional so that V and H lie in plane
defined by the rectangular co-ordinates (x,y) and all the flow variables are functions
of x and y. Therefore the above system of equations is replaced by the following

system
du ov
— =0 e (5)
dx oy
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PlU-—=4Y = 4 e mN| e meem |- pHp | e - e [ - e (6)
& 9y ax o Ay ox dy K
N\ e N 7 ™~
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Now by introducing the functions

oV du
L0 e - — (Vortfeityy {10
ax dy
aHz 8H1
j ==— - —(Cumrentdensity ~ (1)
ax dy
h = P+(2)pq2 whereg=v?+v* (12)

the above system of equations is replaced (5), (8), {9}, (10), (11} and by the
following system :

am oh yu

n —- pvo +pHyj = - — e — (13)
dy ox . K

{Linear Momentum)
o ‘ oh Y

n == - puw +uHj = — 4 - L eieirees (14)
ox dy K

of seven non linear partial differential equations in seven unknowns uvH H,, @,
j and h which are functions of x,y. The advantage of this system over fo the first
system is that it decreased from second order differential equations to the first order
differentiol equations.

3. Study of Flows in The Mcgne’rogmph Plane

Let the function H, = H, (x,y) H, = H, {x,y} to be such that in the region of flow the
Jacobian, : '

y)= wmm == == = 2 0 <o .. (15)

We may consider x and y as functions of H, and H,. by means of x = x(H,, H,)
and y = y(H, H,} we have the relations,

aH oY  aH 3 ‘
—_— ], a! — J—-x- cren (16
o dgH, oy oH,



al“lz ay BH; ax
B amn
ax 3H, y o _

Further more using (16),(17) we have
-1

9 (H;,Ha) a(x.y)
I(x.y) = = =] (H],Hz) ......... (] 8)
Hxy) 9 (Hy,Hp) .
- of a(fy) iy - 9Ly
— = =] = J o {19)
ox 2 (x,y) 9 (Hi,Hp) @ (H.H)
o AEx .0 _3x, D
— = - =] = ] T e, (20)
dy (%, ¥) 9 (H Hy 9 (H;,H)

wheret = f{x, y} is any confinuously differentiable function.

4. Constantly Inclined Plane Flows

We now consider constantly inclined plane flows and f denote the constant non
zero angle between v and H. The vector and scalar products of V and H using the
equation (8) yield,

uH;~vH; = gH Sing =k . 21)
uH;+vH; = gH Cosp = kCotgp .. (22)
2 2

where H H; + H;

Solving (21) and {22) for u and v in ferms of H1 and H2 to get

k k
u = - {Hicotdp+Hy), v= - {(Hgotv-H)Y . (23)
H H*

Eliminate functions y and v from the system of equaﬁons (5), (8), (9), (10),017),
{13} and (14) by using equation (23) and obtc:n the following system of six partial
differenticl equations.

oH, oH,
P R L — 0 ......... (24)
ax dy
do  pk oh jw
N - = (H c01¢ H) o + p'H2] Boe e e e (25)
dy H? ox K




do  pk gh v

N -—-- - (Heoté¢-H) o+pHj= - 4 - . (26)
x H oy K .
2 1 off o, s ] . M, oty Jeotd
(Hy » Hy- 2H\Hycotg)f-- + | +(Hoc0t - Hycotd-2H Hy) |-+ el #H?|H{wm #By [ 20 {27)
& & oy ;3 oy
d | Hyeotd - H, d |[(Hcotyp+H,
k- e am————— k- . ————— = w (28)
ax H? ay H?
N AN 7
0H, dH,
— - = L. (29)
ox dy

For the six unknown functions H,H, j® hof(xy) oncea solution of this
system is defermined the velocity vector figld is obtained from {23) and then the
pressure function is found by usinig the definition of hin (12). Using the transformation
relations (16) to (20) in the equations {24) to (29) we find the following system of
equations : .

e ] wor e o (30)
oH, JdH, ‘
ax,a) ok ath,y)
J e = == (Hyeot¢-H) o+ pHj= -1 e (31)
aHH) B A(H,,Hy)
Aawy) Pk o(x,h)
Nl e . e (Hicoto+Hy) @+ pHyj = J weors e (32)
AH H)  H oH),Ha)
ax 2 2 ) (cot ¢} 22 ox . 2 2 2 3 acom
- .Hz( H;: Hy) e - 2H, Hy +(H; . Hy)cotd] +--- | 2H, H, cotp +{H; , Hy) - Hy (H;, Ha)  womee-
dy 11 -2 1 ocotd] dy ceotd 1 1 . ‘
+--- |2H Hycotg+ (Hy, Hy) - Hy(Hy 4 Hp) --e- 4 o [Hy(Hyy Hy) oovems + 2 HeHy+ (Hy, Hyeotd] =0 ..(39)
1| aH; 6!—!; i}h

ox  dy
¥ R R (34)
Ot o,




(@ (Hpcotd + Hi¥Hz,y) (9 (x, Hycotd + HyHy)
J

9(H, Hy) 9(H; Hp)

These are six partial differential equations in six unknowns x (H,, H,}, y (H,, H,)
and four fransformed functions w((H,, H), h ((H,, H,), i (H,, H,) and o{H,, H,).
The equation (15) implies the existence of magnetic flux funciion Y{x,y) such that,

v ¥

= -H, = H . R (36)
ax S ay .
Likewise, equation (30) implies the existence of a function L{H1, H2) called the
Legendre transtorm function of the stream function ¥{x,y) so that,

oL aL .

—= ey, e = x ceeerenes (3T)
"9H, oH, .

and the functions W(x,y} and L{H1, H2) are reloted by _

LH H)=Hyx-Hy - Y9p . (38)

Infroducing L(H,, H,} into the system {30) to (35) with J given by (18), it follows
that equation (30} is identically satisfied and this system may be replaced by :

3(AL/3H,) pk ah, IL/OH,)
J e o w (Hpootd - Hy) @ 4+ pHy = § eeeeoereoseooe ceereen (39)
d(H,Hy) H . I(H;,Hy) : :
3w, ILIIH,) ek C @LAH,

NI oemeeeeees + e (Hycot@4Hs) © 4 PHj = o) e (40)
o(H,,Hy) H 9(H,,Hy) .

FL 3 1 . 2 pOcotd FL PR s 3 deotd

--- | Hy Hy - 2HyHy(cot @) +H, (H) , Hypemeremens +o- PH . Hy 4 2H|H2(COH¢]_HJ{H“HZ) -------

, _ H | M, oH;

azL 2 2 2 2 aCOI¢ . 2 2 aCOl¢
e | UHy. B (00t §) - 4HyHy Hy (Hyy Hy) oo 4 Hy (Hyy H) coeeee, | =0 oo d1)
8H,0H, oH; oH,

a’L. 'azL . . . .
J| w4 el = T (42)
aHI aH




oL  Hxcotd + H;

8

K Il {aH, H? oH, H? o e (43)

9( HiH $(H, Ho)

AL e (AL '
Jof e X e | ek (44)
H, oM, | H.0H, .

Forthe six functions L {H1, H2),h(H1, H2),i{H1, H2}, w{H1, H2) J(H1, H2) and
H{H1, H2) we define as

aL aL L L
-, @ Q=) J o+ ] -
oH; oH, 9H, oH;
TuH,Hy) = =

.......... (45)
O(H, Hy) 9(H; Hy)
(BL aL L a’r.\
3|, ) [ I S
oH, 9H, 9H, o,
TAH Hy) = = e (46)
a(H, Hy} 9(H; Hz)

and use the integrability condition

L3 #La || [ a .n ¥L a  FL 2 3L ,hb
| JRNPSUER I e — ] =] D P — LI
3H,H, aH, 9H, oH aci k) | Lo, 9H, 9H3H; oH “3(H, Hy)

ie. 9h #n
- = s to eliminate h (H;,Hs) from equation (39) and (40) to obtain
9 xoy dyox . . ‘ '

3L aL
o ——,IT;| @| ==, ITs .
n \BHZ oH, pk
| susmmmmmm—m + e - - | (Hacotd - Hy) Ty + To(Hy+H;cotd)
o(H,Hy d(H, . Hy) H? X



The equations {41}and (47) constitute a system of two non linear partial differential
equations in two unknowns L{H1,H2), ¢(H1, H2} in the Hodograph plane. Once
a solution L= L(H1 ,H2), ¢=¢(H1 ,H2)} of equation {41) and (47) is found for
which J evaluated from {44) satisfies o< | J | < o, the solutions for the
magnetic field components H1(x , y) and H2(x , y} are obtained by solving
simultanecus equations,

aL dL
— -y, —=x e (48)
aH, oH,

2 2

H; + H; N 6=tan'1 (HZIHI) .
or. Hy=Hcos€@ , Hp=Hsinée ... . (49)
a 9 S 9
— = Cosh - -

L A (50)
] ] Cos8 @
— = Sud - —
oH, oH H a0

Defining L* (H, ), * (H, 9),

w*{H, 0}, | (H 0), J*{H, ) 1o be respectively the

Legendre transforms variable angle, vorticity, current density, Jacobean function in
(H, 8) co-ordinates and using. (49) and (50}, we have

BEG)

a(HyHy)

B(F*,G*)

aHe) - 1

a(F* G*)

v {51

X .

9(H,8)

- where F{H1,H2)
differentiable functions. We obtain that L* (H q) and ¢ *(H, 8) satisfy

o(H.Hy) H
= F*H, 8) and G{H H,}

a(H 0)

G*(H 0) are continuously




FLe dcot ¢* o I A S U AL

----- I+ eemeeees | Kj* 4 Koot @F  wn | 4 |oeee doee b oo oo || HE oo - K#
oH? » a0 H, 8, H oH oH
(R & LIS B deotgt R
| - e - e | EK* (2Cotg-H -remenens B cotd*. Hk - ke =0
H 3H H, . oH H  ®
L(52)
aL* Cos®  dL* dL*  .Sind aL*
& ISING - 4+ e - TFTy* 3| Cos® e o e — AT,
oH H a9 oH H 00
+ -
a(H, 6) HH, 8
dL* Cos8  oL* dL* SinG  oL*
F T S — — ¥ H Cos®  —me - e o E
oH H 28 dH H o8
+uHSin 0 +aHCos6
d(H, 8) ' o(H, 8)
-p k¥ T*(SinG Cotg* - Cos 8} + T* (SinB + CosBeotp®) =0 ... (53
Where
B
J¥H,8 )= S 4 2
LA Lx  FLr aL* L
AR I - SRR I I - G
n? PH 3 90 JHIO :
. NS (54)
N
. oL 1 L -1 aL*
007 <)Y L OO PR S -(55)
oH* B H 3H ) ‘ :
oL*  cos®  gL*
3(sin@ - + ---—- -, W)
1 dH H a0
Ty (Hy 8) 2 cr ommemecmmr s e = TyHpHy) e (56)
H dH, )

i0




oL* i@ aL*

O(cosB -+ omee -, W)
1 oH H 20
T (Ho0) 5 oo oo, = Ty(HyHg) e (37)
H AH, 6
and
I* deotd* 1 A+ 1 FL* dot¢r OL* 1 AL
o (H, 0 = - o e e e b e e
H? 90 H® 20 H 96H M o H od

FLod ar 1P| 2 1 A @ cotg* I+ AL 1 A
Feotd* | v e 0 e + - S KEL e s T
M H M K ) u{mn | e H 25 2 H %

Once a solution L* = L* (H, 8), ¢* = ¢*(H, ¢) of the system of equations {51) and
~ (52) is determined, we employ

aL* cos§  gL*
X = sin® - F e e
oH H 20

............ {59)
sing  gL* aL*
Yy 5 e e - cos® -
H a8 oH

and {48) fo obtain H,=H  (x,y), H,=H,{x,y) in physical plane. The remaining flow
variables are then obtained in the physical plane by using the flow equations in the
physical plane

Solution
1. Vertexflow : Inthis flow, we wish to determine the solution of a flow problem

when the Legendre transform function is of the form L*{H, 0) = F(H)in (H, 6)
co-ordinates,

11




2 2
LH,Hy) =F\/ H, + H, in (Hy,Hz) co-ordinates in the hodograph plane.

Let us assume L*(H,8) =FH} ... {60)

to be the Legendre tranform function for the system of equations (52} and (53) such
that F! (H)1 O, F'' {H)* O. From equation {60) and (51) we find that §*{H, 6)
sofisfies

deotp* 1 F F 1 PR .
NUDES RN | § TR Y - S 1 (61)
®  K={  |HF" HEY B @Y
H 1
where j*= -~ o+ —— (62)
Fl FII
As calculated from (55} integration of (61) yields cot¢* = G,(Hj@ + G, (H)
........... (63)
Where-
1 F F' 1 FlF1
GH) = = | K e 1| o o L e (64)
K HE" H(RMY? = (FMy?
and G2{H} is an arbitary constant of H. By using {60) and (63) in (54) to (58), we
find* =AHS +BH . (65)
Fll Fl
Ty* = —— AGH) sind -( —- cosB) (AEDE+B' @) ... veeee (66)
B : H :
Fll Fl
To* = - A(H) c0SO -( - sin®)(AE)O+BY(H) 00 e (67
H H
H
J¥ = cumeiean eereieenn (68)
FIIFI
Where
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KG, 1 1 1 1 j r i 1 F
A(H) = rreees + KG,

Gy |-+ = | 4G, + +G, - P
HFI.I HFI HZFI FIIFI H(Fll)j E{FIIFI HZ(FHI)‘Z H(F”)3

ceviennrenns (69)
KG, /1'.1\ /1- 1\' ‘/1 1 piin )
B(H) =t KGy  =im - e |4G, + +G, Ny .
HF]I HFI ‘HZ.F“ FIIFI HZ(FII)j HF]IFt HZ(FH)z H(Fu)a
............ (70)

Thus L*(H, 8) and cot¢* given by {60)-and (63) respectively, satisfy equation (52)
but in order to be a solution of equations (52) and (53) the unknown functions
F(H) and G2(H) must satisfy

p o+ dor [ | 3(sin6F, J¥T1%) dcosOF' J¥T2%) ¥

= K¥lcotp* - F'4 oo @ 4 + - -] =0

H 2 oH 3H,8) - Me) K

with j*, cotd*, w*, T,*T,*and J* asin (62) o (68) we find that FH)= M,H2+M,,
G,(H)=M, is a solution set of (71) such that Fi{H) = O ,F"Y{H) + 0 where M, =0,
M, and M, are arbitrary constants

Hence L*{H,8 }=M, H2+M, _ RETTI (73)
$*(H.0)= cot'M, L (74)

is o solution set of the system of partial differential equations {52) and (53) using the
Legendre transform function from (73} and {74) in equation {59) and {65} fo (68) expressions
for the magnetic component , the vorticity and the current density are obtained as

-y X 1 .
H = e s Hy =0 e y =0, j= e : S (75)

H* M, M, ] H? M, : ol T

13




Finally employing {75) and {76} in (22) and (23) ,and integrating we find the
function h(x,y ) ond substituting hix,y } in {10} we find the pressure function as

M aM, _ C2p8t T M1 (14My)

e (hgbys) - e K [In (phy) + 2Mptan (y)] = e meeeeeeeeeee + Mg
4M, Ma M, Xat¥2

-
]

where M4 is an arbitray constant summing up
A variably inclined steady MHD flow through porous media using Hodograph

transformation problem with the families of stream lines and magnetic lines given
by x2+y?= constant and M, (In(x 2+y%) - fan (x/y) = constant

5. Flow With Magnetic Magnitude Constant on Each
Individual Stream Line

.Using (24), equation (27) yields

aH, 2 2 | OH oH, oH, 2 OH,; 9H, dH, JH,
2HH; - + (Hz- Hy}| - + - |-2H;H; ....-2cotbH, __ +HH)| ... + . [ +H; - |=
.o8x dy ax ax ax dy dy

if the magnetic magnitude is constant on each individual stream line then we have
HVH2 =0

"y OH, 8H, H, 2 9OH,
Hy = + HH) |- # o |+ Hy = =0 L (19)
x dy ax dy :

oH; 2 2
2HiH, - + (Hz—l‘{;l) ----- L B o F 5 28 — =0 e (80)
ox dy 9% ox

I4



So, if the magnetic magnitude is constant along each individual stream line of an
incompressible fluid, then H ,H, must so’rlsfy the equation (9), (79) and {80}, we
discuss thes following cases: -

Case 5.1: Let)#0 : In the flow region under consnderohon lei the flow vcnobies
H, (x,y), H,{x,v) be such that the transformation Jacobian

S # 0.Le. 0<|J| <o
9 (x,y)

then from (49) and (50} we get

3*(Hcos9, Hsin®) 3 (Heosd, Hsin0) F(Hcosd
(Hcost, Hsin@)  —————oooeeeee - (Hc05%0 — HZSI0%0) »  -everemmresmsnmmmena -(H cosG Hsin8)  -=--mmm-
9H,% OH,8H, F)z
FLr aL*
H e o e =0 e, (81)
oHol a9
FL* aL* i
) CHR— Hoeeee e =0 (82)
oH' 9H  a8®

Generadl solution of (81} is given by,

LH8) = Hed@)+BH) (83)
where o) and p(H) are arbitrary funchons of their arguments. Using {83) in (82)
we get

HB"BY) - (o + ) = Oand - HPU-BYH = (o +0) = m, (say)

where m, is a constant and primes denofe the dlfferenhohon with respect to the
orgumenfs

Now HB''-B'=m' gives B()=m/2H%mH+m, e (84)
where m, and m, are constants and
o'l+a=m; gives a(B)=Acos 8+BsinB+m; e (85)

where A and B are arbitrary constant. Substituting (84) and (85} in (83) gives

15




L*(H,0)=H(Acos 6+Bsin 0+m,)+1/2mH’-m H+m,
The above with the help of (49) cnd (50) can be written as _
L(Hl,l-lg) AH1+BH2+(ll2m) (H1+H2)+mz ......... (86)

Then x= B+mHz . y--(A+mHl) H,=(1/m) (x-B) , H1=-(y+A.)Im ......... 87
& ((t/m) (x-B)Y) 2 (-(y+A)m)
J = eeemeoeereeremmeen - emmmmmmommnemen
ox dy
j=2m (88)
T A
(x-B)? + (y + A
(x-B) cotd + (y + A)
Vo= kMmoo e
(x-B)? + (y + A)
ok n _ '
h o= hg + ~=- [(x-B) + (y +A)] + --- (Ax-By+xy) SR ¢ 1))
m? km : ' '

If K — e, i.e. porous media.is removed, we get all the results of Sattar and
Chandna for velocity vector. The pressure is given by

Pk n -

P = Py + --- (172 (x%+y") + (Ay -Bx) + --- (Ax-By+xy) SN ¢ 11)
m? km

and stream lines are given by (x- B2+ {y + A)2 = constant  ......... (91)

which represent concentric circles whose centre at (B, -A).

Case 5.2:. Llet } = 0 : Let the flow variobles H1 (x,y), H2({x,y} be such that in the
region of flow the Jacobion

16



In such a case either H' is a function of H, or H, is a function of H,. We consider
H, as a function of H,. :

Hp= oMy ©92)

ax . dy
Eliminating (dH;/0x) from (93) and (80) we get
(Hi +6¢) (Hi¢' - ¢) H; (GH/y) =0

From the above we have the following :

oH,
case 5.2.1: - =0, Ho'-¢ =0
ady

case5.22: Hyo'- ¢ =0
case5.2.3: H, + ¢0¢' =0
9H| oH;

case 5.2.4: - = 0, implies --- =20
dy . ox

ie. H, =k, and H, = k, hence the solutions are =0, |=0, H,=constant,
H,=constant, : -

h= hO - (T]/km) (k|x+k2y)

P = Py— (n/km) (kix+kzy)

2 2
Py =constant = hy = (p/2) (k; +k;

The equaiion of siream line is given by

K,x - Ky = constant and represents a parallel straight line.
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Case 5.2.2:  H¢'-¢ = Oimplies ¢ = k,H, ie ¢, = k3.

oH, oH;
i€, e 4 Ky e =0
ox dy

General solution of the equation is given by H, = f(kx-y) and H, = kf (k.x-y)
.which implies f1(k x-y) =0
Case 5.2.3 : Put restriction on ¢ such that H, + ¢* = constant

hence H; = f (ksx - y) and H, = ksf(ksx-y), ©=0,j=0

k(cotd-ks) k(1 + cotdks)
1 v VT e » h = hy -(/k) (xf+k;yD)
(14k3)f (1+ks)f '

2

2
P = po—(p/2) (A+ks)f - (M/KF (x+ksy)
and stream line is given by k.x-y = constant and are parallel straight lines.

Condlusion

It is shown that when the velocity and magnetic vectors of MHD flow are constantly
variably inclined then the streamlines are concentric circles and the magnetic lines
are spirals. These are shown by means of graphs (figures 3 & 4). Also graphs are
plotted for velocity components u,v against H1 (figures 1a,1b & 2). In figure 1q,
the curves almost coincide ot angles 45° & 75°. In figure 1b, the curves almost
coincides at angles 70° & 67°, 68° & 65° respectively. But however for angle 66° the
curve steeps above. This is because velocity and magnefic vectors are variably
inclined.
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~ Fig. 1b Variation of u with respect to H,
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Fig. 3 Variation of Stream lines and Magnetic lines
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Fig. 4 Variation of u*4v? =/(x%+y%)
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