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TWO-PIECE CUBIC SPLINE FUNCTIONS

* Hannah Vijayakumar

Abstract

PM. Prenter defines o cubic spline funcfion in an interval [o,b] as a
piecewise cubic polynomiol which is twice continuously differentiable
in the entire interval [a,b]. The smooth eubic spline functions fitting the
given data are the mast popular spline functions and when used for
interpolation, they do not have the oscillatory behaviour which
characterizes high-degree polynomials. The natural spline has been
shown to be the unique function possessing the minimum curvature
properly of off functions interpolating the dota and having squore
integrable second derivative. In this sense, the natural cubic spline is
the smoothest funclion which inferpolates the data. Here Two-piece
Natural Cubic Spline functions have been defined. An approximation
with no indication of its accuracy is utterly valueless. Where an
approximation is intended for the general use, one musf, of course, go
for the frouble of estimating the error as precisely as possible. In this
section, an ottempt has been made fo derive closed form expressions
for the error-functions in the case of Two-piece Spline functions.

TWO-PIECE CUBIC SPLINE

Let f{x) be @ function defined as thrice differentiable in the interval [xi- 1, xi + 1]
and let the cubic spline interpolant of f{x) be sj (x}, | = i - 1, i in the subintervals [x|
% + 1] and defined [ 2 ] as follows.
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s(x}=si(X} = a(x~x)°* + by (x=x)2 + Gj(x=x) +dy, j=i—1, 1.

Since s; - 1(x}) matches with f (x) of the nodes x = x| and x = x,

Si—1{X—1) =f{-4) D diny=f(X-4)=fi_4, sAY 1)
s =500 =a(x—x)° +b (x=x)P+o(x=x)+d, j=i—1,i
and

S-1(X) =100 P aih®+bi_hP+c_th+dioy=f, .2

whe_r_é Xi“IXl-d =h=X,1~X.

Since si(x) matches with f (x} at the nodes X =Xi and X = X;. 1,

Si(X)=f(Xj) 2> d=f, ...(3)
and
$i(6.1)=f (1) P ah®+bhP+ch+d=1;,, L)

Since the first and second derivatives of the spline functions match at the interior
point namely x, we have

S’i-}(Xi) = S’|(X|) <> ‘3ai,1h2+ 2bi-h+c.1=¢ - . (5)
and
S”|..1(X|) = S"l(X|) ') 6ai-1h +2bi- 1 = 2y e (6)

In the cose of natural splines, the second derivatives at the end-nodes are zero.
i, s"_1(x-1)=0 D 2b_,=0 ...(7)

and " (x,1) =0 & 6ah+2b=0 ...(8)
Selving equations (1) o {8}, the unknowns in s, ,(x) and s, (x) are got os
given below '

1
@i = e sl =20+ £y ]

b1 =0

1
Ci-1= [=fioq+6f=56f.4]
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di-1=fi_y

1
a|=_'-4-;;3-[f“'1_2fi+fi-1]
3 . .
by = e [f|+1"'2fi+ff'1]
4h? . S
1
Ci = ~----[fi+1""f'l-1]
2h
and 4 = f,
Hence, si-1 () = - (fiyq=2f 41124 ) (x=x_4 )°
4n°®
1 .
# o B =5 ) (X=Xi) +Hiny ... (9)
4h |
ands(X)= """" H:+1'2fi+\c 1HX x )
3
¥ -;1-};;(fi+i‘2f.+fi-1”x'x)2
1
+ "éi'_"(fiﬂ_fi"')(x“xi) + 1
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Error Analysis based on Tdylor Series Method

While employing Taylor Series Method to analyse the error involved in approximating
a function by a cubic spline polynomial, following lemmas are made use of.

Lemmat

If & C'[a ,b] and ¢, and ¢, are of the same sign, then
caf (%) + Cof (X2) = {C1 + C2) F (€ ) where £ & (X, , X2) and (Xy, X2) £[a,b]. [4 ]

Lemma 2

if fe C'[a ,b] and ¢, and ¢, are of the same sign, then

Cif (1) — Cof (%2) = (€1 — C2)f (X1) + C2 (X1 — Xz ) "(€ ) where § € (xq , X2)
and (%, xz)efa,bl. [1]

Now, for the Two-piece Cubic Spline'inferpolciion,

let E(x) = E{x) = f (x) — sj(x), where j=i—1

and i respectively, denote the error [3, 6, 8, 7, 8]forxj<x <Xy, 4.
Consider E;.1(x) =f (X) ~ 8/-4(X), Xj-1<X<X.

Upon setting x = x,_4 + 8h, 0 <8 < 1, the associated relation will be

Ei-q(8) = T(8) - si-1(8)

8°h° 8°h?
R AR ()
2 3!
~ 93 o . . e
- ['z-' (f|+1 "2fi+fi—1 ) + ':1‘“ (“fi+1 +6fi—5f|_1 )+f|_1 ]’

~ where the unknown § £ (x~1,X) .
[ E, f nofations indicate that these functions of @ may be different from the
functions £, f of x, respectively. Of course, E(8) = E(x) and (8) = f (x) ]
8°h? o°n’
E,-1(8) = f|_1 + Bhf ’i-1 4 wewnreces f "|..1 + ---------f"'(F, )
2 3t
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0° 4
) “;I»-{[fl-1 + 205+ 20767 g 4 e BTF ()]
3 .

h2 h3
= 2[fi—q 4 Af g + wwem- LTRSS F €21+ 1i-1}
2 '8
N 4
- ~'--{[f|-1 + 2,hf =1 +2h2f"|-1 + omm-- hsfm(“h)] :
4 _ 3
h2 h3
+6[fi_1 + hf '|..1 +"""f"|..1 + -----f"'(f,z)]- 5fi-1}"'f!-1 .
2 6
where £, ¢ (xi_i.x.”) and &2 € (X-1,%).
Upon simplification,
) h? h®

Ei-1(8) = == (10 ——1"_; 4 [ 0°F™(§)
2 2 6

o |
- (3-0%) f™(€2) +20(1-6%) £(Ey)]

8 h? R
= = (1=0) e £y 4 e [(2- 67) (€ )
2 2 6

) ‘
— e (30 ) F7(E2)]
2
where &3 € (§,81) € {X-1, %) using lemma 1.
= e (18 e %y +0 (1 ~ 07) - (5 3)
2 2 12
8 h®

+ 2 (3-6°) 6 [f "(€3) ~ f"(€2)] using lemma 2.
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8 S R | : Ko
= —eee (1 =8 w7y + B(1=6%) e ()
2 2 ) 12

h®
+0(3-8%) - (€3~ E2)T™(E)]
12
where £, ¢ (§2,'§‘3)§(Xl-—1 y Xied)e
3 hz : hé
Hence, Ei-1(8)= —0(1-8) —-f"_y + 8 (1—06%) - "(E3)
h* .
+0(3-6%) 0%t MEs
12

where 0*h= §3-§2and 0" ¢ [0,2]as &2 §3 €(Xi-1,X41).
Let Max |f (€5} | = Mg ‘and Max [f "(€4) | = Ma, X €(Xi—1, Xiu1).

4 1
Maximum of |8 (1 -8 )°| is = , attained when 8 = -
' 27 - - ) -3
2 1
Maximum of | 8 (1 = 8 )% ] is ------ ,when 0 = -
B 33 : V3

Maximum of | © (3-8 | is 2,when@ =1,

Maximum of 8* =2,
It follows that,

[Eioq(X) | =] Eoy(O)]g - TRl I AT SR R Mg+ - h*Mg ... (11)
.27 . 18v3 3 ,

Now consider,

B () =1 (X) —8:(X), % <X €01
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Upon settingx =x,+6h,0 < 6 < 1,
E(®)= F(6)~ s(8)

92h2 e3h3
= fi + Bhf'} 4 s 7 e £7(E )
2 6 _
6° . cl: B
w{~ - (frar—2fi+Fi_¢) + =omn (fFiv1~2fi+fi.q)
4 4
+ ---(f|+1—f|_1) + fi} Wh6f3§5 £ (X| ,XE.¢:1).
2
e°n* 6°h?
=1f; + Ohf’ + f7 + == (§ 5)
' ‘ 2 6
o° K2 Ko
mmm [ £ AE T oo £ eee £ (€ ) 2F
4 2 8
h* h*

+1 = hf 4 wem § 7= meee £ ()]
2 6

c: R O
wwomee EE{ BE o o £ b oeee £277(E ) 2f 5
4 2 6

h? h*
#fi—= N 4 e £ m e £77(€ )]
2 6

5 oo
e ff B e £ e £(E )
2 | 2 . 6 « 0 :
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h2 h3

iR e Y e £2 7))}
2 6 _

where §e € (X ,%.1) and §2 € (Xi-1,X%).
e h? 6°n’

Bi(0) = —rr (1-8) e %) 4 onome £7(Eg)

8 h® e h’
- - (2+30-0%) () = - (230 +6%) — (€7
4 . B 4 6
g h? 6°h® oh’

Ei8) = = (1-8) = 7} s oeeves £7(Eg) = woom £7(E )
2 2 6 6

where 3 € (§5,87)e( %=1, X.1) using lemma 1.

o° h? 9
= = (128) w7 — e (1~ 6%) W1 ™(E5)
2 2 6
eh’ l
+ "é"' (Es—Ea)f "(Eo)

where &5— &4 = 0%,

Let Max If "(§5) | = Ms and Max [f "(€o) | = M,
it folfows that,

_ 1, L 1,
{Eix)| = Ei(0)|< -é;-h [ 2] 4 =mee Mg+ --h'M, ... (12)
3

where X €[ X , Xi.1].
A perusal of the inequality (12) paired with (11) reveals that

1 1 i .
|E(x}| <= h? Lg 4 -eemer h® Mg+ - h* My, X e[ Xi1, Xieq] ... (13)
27 9v/3 3
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where Lo = Max (f "/ {, [ f"i-+]).

However, it is important to observe that, had we changed the originto {xi + 1 +
xi-1,0) and reversed the x-oxis, then h, M, and M, would have remained the
" same ond {12) would read {11) with ", | replaced byf" +qinthe firstterm. Thus,

1
FES(0) | <oore h® 187 g [ oo B Mg+ - My L (14)
27 18v3 3
forx e[x ,x .1 Inequality (14) appears fo be better than inequality {13} since

the nurmerical coefficient is halved in the second term. In conclusnon the following
inequality is recommended : —

1 l . 1

E(x}| € -e--h*Ly 4 -arees h* M '-s-'---h‘-M,- ...15)
FE(x} | > 3 e I My ; ‘ (15)
wherexs[xi_1,xi+,]andL2=Max(]f”i-,l,|f”.i+1[)..

Here, we overlook (13).
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