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ABSTRACT

Statistical modelling of HIV infection is useful to understand HIV spread
mechonism, for predicting HIY and AIDS counts and for forecasting
healthcare needs. This article:

i.  stresses the need for modelling of HIV and AIDS

if.  discusses the appropriateness of a stochastic model for
HIV iransmission and

ii. examines the applicability of diffusion of news and rumors
model of Taga & Isii {1959), reported in Bartholomew (1967)
and presents the adopled version of this model to suit HIV
spread in homosexual populations. Three different cases
are considered under this model.
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1. Introduction

Itis more than two decades since the early cases of AIDS were recognized. In many
countries, HIV/AIDS represents the deadliest emergency and the greatest social;
economic and heaith crisis of modern times. The AIDS endemic is increasingly
female, young and poor. While HIV affects people of all ages, half of all newly
infected people are 15 o 24 years old. The impact of this endemic goes beyond the
lives of infected people. The disease changes community dynamics, undermines
the structure of the family and threatens the future of children. Homosexuals form
the second most serious HIV high risk group followed by heterosexuals. In many
parts of the USA, homosexual fransmission is the single largest mode of HIV spread.
The spread virus in this group is of considerable interest for planning interventions.

Modelling of HIV Spread

Epidemic modelling is an exciting, active and rapidly expanding field. Models
based on transmission mechanisms of AIDS virus can help medical and scientific
community to understand and anticipate its spread. Since AIDS is expected to
place enormous demand on healtheare facilities, there is a pressing need to develop
flexible prediction models. These are on integral part of long range scientific research
and are equivalent to the hypotheses to be tested (Bailey, 1990). Modelling has
been in use for a long time (Farr, 1840; Hamer, 1906; Ross, 1911; McKendrick,
1926; Kendoll, 1956 and Bailey, 1950, 53). Molison et al., (1994) have extensively
reviewed epidemic models. They discuss the choice among alternative intervention
strategies which play a crucial role in quantifying uncertainties of AIDS projection.

In developing a model one creates a logical structure to organize existing information
into a framework and suggests what new data that must be collected. Thus, models
provide insight into the systems even when data are lacking. Hence statistical
models are essential for understanding AIDS and the relation between social and
biological mechanisms thot influence its spread.

Deterministic theory of HIV epidemic

Incidence of HIV seroprevalence and AIDS counts is o large scale phenomenon.
The variability due to large number of susceptibles and infectives on such a
phenomenon has to be reduced. We assume that, for a given number of susceptibles
and infectives and for given rates of contact, infection and removals, certain definite
numbers of new HIV and AIDS cases will result during o specified period. A
determinisfic approach as developed by Kendall {(1956) has been used to evaluate
probability of HIV infection in heterosexual relations and for estimating HIV infections
in perinatal transmission by Srivenkataramana and Rao (2002).
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2. Need for Stochastic Modelling

Many a phenomena in life sciences are now studied not only as random but also
as changing with time or space. For example, the growth of HIV infected population
over fime may be considered to be a stochastic process. The growth of HIV in blood
is a determining factor fo confer seropositivity. Once this occurs, its progress fo
AIDS is characterized by several stages associated with depletion of CD; cells. This
forms a discrete space continuous time stochastic process providing a basis for
modeliing of AIDS. Moreover, as AIDS epidemiological dota become more extensive
and on occasions deal with smaller risk groups than those relevant for large areas,
the elements of random variation become more prominent.

McKendrick (1926) was the first to give a stochastic treatment of an epidemic
process. Excellent reviews on the current modelling work on AIDS have been provided
by May and-Anderson (1987), Anderson et al. (1988), Isham {1988}, Bailey (1988)
and Moliison et al. (1994). There are several advantages with stochastic modeiiing”
as compared fo the deterministic approach. For instance, i) the former provides
more information, i.e., besides expected values one can compute variances and
covariances and assess the effects of various factors, ii) stochastic models along
with computers, provide a wider choice in formulating the underlying assumptions
and modef structure, and iii) Monte Carlo methods may be used to assess whether
solutions of some non-linear difference equations are in fact measures of central
- tendency for random functions of the epidemic process.

3. The Model

The spread of HIV in o heterogeneous population with different mixing pattern is @

phenomenon of interest and importance. We examine below the applicability of
Taga & Isii (1959) stochastic model for the diffusion of news and rumors which is a

special case of the pure birth process, to understand the HIV spread phenomenon

among homosexuals. There are many similarities between these two phenomena.
In news diffusion model, information is transmitted by the members of the group

from a source either at an initial point in time or continuously. The source may be

a television, a newspaper, o hoarding or a group of people infroduced into the

population from outside. Persons who receive information may become spreaders

themselves by transmitting information to others whom they meet. Similar is the

situation in homosexual population in the context of HIV spread.

The syster which we study may be described as follows: There is a closed population
of N homosexuals who are at risk of HIV infection. This represents the set of all
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adults of the same sex in a given region. The virus is transmitted to the members of
this group from a source at some point in time or through homosexual transmission.
The sources of infection considered are infected needle, infected blood and other
contaminated material. Persons who receive the virus from the source may become
spreaders by transmitting the infection fo others in the population with whom they
mix. The virus spread continues until all in the population are HIV infected. From
practical viewpoint, the characteristic of interest is the total number HIV infected at
any time . In this type of HIV transmission, the stochastic element enters ot fwo
points. Whether or not o given person gets infected depends on i) the person
coming into contact with the source or a spreader and ii) on.the infection being
transmitted when contact is established. Here neither (i) nor (i) is a sure event and
hence the HIV spread is o stochastic phenomenon. We consider the model with
three different cases with respect o the mixing of members in a pair.

3.1. Case (A) : Parfect mixing

I this the assumptions of the model are that (i) all members are equally exposed fo
the source and (i) all pairs of members have equal likelihood of acquiring infection.
Assumption (i) is not crucial unless the intensity of transmission from source is large
compared to the intensity of transmission befween the members in.a pair. The
second assumption is unlikely to hold for human populations in the context of HIV.
We later examine the effect of relaxing assumption (ii). First we define two random
variables as follows:

N {t): size of the homosexual population at time t which is closed for migration,

H {t) : number of persons HiV infected at fime t.

t,,: time taken for the number infeded to reach level H.

Consider iwo events as follows:

E: {trcnsrn.ission of infécfi_on from the source to any member of the population}.
E,: {ironémissidﬁ of infection bya sprecder}.

Assume that the proba bilities of these events are proporhoncl to the length of time
intervals, :
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Thus
P{Einf{t, t + o0} =o.dt, (x > 0} and P{E in{t t + o)} = B.at, (B > 0),

where c.and B are the intensities of transmission from the source and between the
individuals in a pair respectively. It is also assumed that all transmissions are
independent of each other. The system is said fo be in state H when exactly H
persons have received the virus. Here the stochastic process is,
P{H—(H+1) in {1, t+01)} = A4 8t; (A > 0).The infection rate, Ay, is treated as
a parameter of the model. When the total number infected is H, there are (N - H)
persons not yet infected. Thus the total contribution to Aw from the source is
(N~H)a.dt. Also, of all the possible pairs that could be formed in
the given population, there are HN — H) pairs which consist of one infected
and one susceptible. Therefore, the total probability associated with these pairs for
H—{H+ 1} is H(N=H)B.at.

Combining the two contributions, we get
Ay = (N-H) (o + BH) ; H=0,1,2... SN-1}) (1)

Thus, in epidemic theory, the source consists of one or more persons who spread
the virus. If one person starts the epidemic, we have fo puta = fand then eqn (1)
reduces fo :
M=BH+NN-H;H=0,1,2,..,N=1) 2)
Analysis of the model: '
Assuming Poisson law for infections o toke place, the expressions
{Bailey, 1957) for the distribution of H (T) is given by P(H()=0)= et and
H-l & At
PRO =M= [TAY o H=0,12 ...N~1) (3)

== TR,-4)

=0
J=

Since }; can be found from eqn. (1) in terms of o, B and N, the problem is solved
in principle. The feature of the distribution, which is of particular interest, is the
mean, H(t) .

The plotting of H(t) for a given population as a function of t gives the expected
development in the HIV infection process. If we plot the derivative of H(t), we get

the rate at which the HIV infection spreads. This moay be called the ‘HIV epidemic
curve’, which gives a clear picture of the growth of the epidemic. The expressions

for Hi(t) and its derivative are obtained by Haskey {1954} and are reported in

Bailey (1957}. At time 1, if r susceptibles are left uninfected, then changing fime
scaleto 7 = B¢ instead of t for sim plicity, the stochastic mean is
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— . peer
H(z)= ZnCr {(n—2r+1%c +2~(n—2r+1) Eu‘l Jg =T
r=1 —r

where n = N - Hand rruns to n/2 if n is even and up to (n+1)/2 if n is odd.

3.2. Case B: Imperfect mixing

The assumption that all pairs of members have equal probability of virus transmission
may not be fully justified in human populations. Therefore it is of interest to investigate
the effect of relaxing this assumption. As an exireme case, suppose that there is no
contact at all among members of the population. The diffusion is thus entirely
attributable fo the source. This case is covered by the above model and is obtained
by sefting B = 0. Then we hove the pure birth process and the distribution of H (T )
turns out fo be binomial with

P{H{t) = H} = (:) (1- MM e n=0,1,...,N

dH(t)

Here H(t) reduces to N (1—e~*) and the epidemic curve becomes,

N.ae . In this, unlike in case A, the rate of spread declines continuously with time
instead of first rising to @ maximum.

Duration of the epidemic

The time taken for a proportion P of the population to get infected is obtained as

Lt
§N-£+1

E@ty)= considering the fact that t;‘l s are partial sums of the 1's.

1
a
If Nis large and P = H / N is not near 1, we get, Et, )= —(é] log,{1- P).

[t may be noted that expected time taken to reach a given proportion does not
depend on N unlike in the case A where P will be reached faster for a large N.

3.3. Case C : Spreaders active for a random time

In the pure birth process model in the context of epidemic theory, it is assumed that
the spreaders of infection continue to do so indefinitely. As consequence of this,
all members of the population will eventually get infected. But, in HIV transmission,
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the infected after knowing their status or after onset of AIDS symptoms, generaily
stop the risk prone activities and may cease fo be spreaders. The other reasons for
this include, a social isolation, as there is a social stigma associated with the
disease, b) disinterest in spreading, and ¢} death due to AIDS.

A comprehensive model considering all possibilities is difficult to develop. Thus the
model proposed here considers only reason (i) and assumes that the spreaders
are active only for a random period of time T. As this period is reported to be
increasing steadily over fime starfing with mean T of 4.5 years, the number of new
infections will be larger in the course of time. Thus T may be assumed to follow
exponential distribution with mean !, where i is the rate of infected who cease to
be spreaders. ' ‘

The description of the model is as follows: The population of size N consists of
infected persons and susceptibles. At any time 1, let i = number actively spreading
HIV and s = number of susceptibles. Then, N — (i+s) is the number of persons who
are infected but have ceased to be spreaders. Since N is fixed, the state of the
process at any time t is defined by the values of any two of these variables. For
example, the system is in state (i,s) if ift) = i and s{t) = 5. Our interest is to know
the development of the process in the course of time. In order to do this, we
consider the joint probability distribution of i and s, viz.

Pr{ift) = i, sf) = s} = P,

From the state (i,s), two transitions are possible during the intervol {i, 140 1).
They are:

i) {1,8) = [(1+1), (s=1)] with probability s (c+B1) 3 tHfors = 1,2, ... N;

i=0,1,....,N-1such that 0 < (i+s) < N.

i) (i,s) — [(i-1), 5], with probability iud t. Transition (i) takes place when
spreader mixes with o susceptible and transition (i) occurs when a
spreader ceases fo spread the virus. Using these transition probabilities and
relating the joint probability at time {t+ot) to that at 1, the foiiqwing bivariate
differentiol - difference equations for P14t} are obtained : )

Bl 0) = = s {slort Bil+ui} P + (5 1) (0B (=1)) Pryr, ey () (1) 1t P
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Pro () = — NaPygf) W
and Py {0) = 1, where P' denotes the derivative.

Now, the problem is to solve the set of equations (4). Here if 4 = O there is no
retirement for the spreaders. If B = 0 or it = o, retirement is irrelevant as no one
is ever actively spreading the virus and i{t) = 0, always. When i = oo, the model
reduces to pure birth process with = 0. Although the system is difficult fo solve,
it is easy to find the limiting values of the probabilities P,yf} as t—eo. That is, after
a long period, the spread of HIV stops either because every one is infected or all the
spreaders have ceased to be active. In either case, i{es), the final number of
spreaders, is zero with probability 1. Consequently, Pegl>)=0ifi > 0.

When i = 0, P, (=) will be the probability distribution of the terminal number of
susceptibles. This can be obtained using embedded random walk over the lattice
point {s, i), which is Markovian since the transition probabilities depend only on
the present state of the system. . :

H=N+a

H=N
it ® (s, i+1)

8(s,0) * (N.,a)
® (s8,i-1) Start
5§ — N

When the system is in state (s, i), the two transitions which it can make and their
associated probabilities are:

i) (i,8} = {i+1), s=1) = s/ s+ )
i) el ) = {7/ [s+1),
where [ = relative removal rate

_ _average fime taken for a randomly chosen pair to meet
average length of time for which a spreader is active

Alarge value of {* indicates that the spreaders cease their activity reflatively rapidly
and a small value implies the reverse situation,
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4. Discussion

The AIDS endemic has raised @ number of important health policy issues. Some of
these have been raised by scientific advances and others by the societal implications
of AIDS. Modelling is the best approach to identify future policy considerations.
Modelling should take care of data requirements to know the prevalence of infected
people in different population groups by suggesting special studies. We must focus
attention on persons with high-risk behavior such ashomosexuals. Thus stochastic
modelling is handy to study the HIV spread mechanism in o homosexual group.
The virus spread phenomenon in homosexuals resembles the diffusion process of
news described in Bartholomew (1976) as an extension of pure birth process. Sec.3
modifies this model fo suit  homosexual population and considers three cases.
Out otthese, case Cis particularly relevant to the AIDS situation, since HIV spreaders
are active for a random period of fime, that is, up to diagnosis as an AIDS case.
After this the spread activity is very likely to stop.

Case A of perfect mixing assumes equal exposure of all members to the source and
also that all pairs have same probability of infection. On the other hand case B
examines the extreme situation of infection only from the source and no infection
derived from the spreaders. The ground reality is an intermediate situation of
infections directly from the source and also from the spreaders. Accordingly the
assumptions will have to be modified and the probability expressions derived. In
this set-up the probabilities from cases A and’ B can serve as upper and lower
bounds for the actual infection probability,

One way could be on the lines similar fo the estimation of probability of HIV
infection in the context of heterosexual contact, described by Srivenkataramana
and Rao(2002), by evaluating the effective number of pairs giving rise to the new
infection. _
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