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Evaluation of Scipy.ode Integrators in 

Solving the Lane-Emden Equation for 

Polytropes as a Boundary Value Problem 

with a Fitting Method  

M N Anandaram*   

Abstract                                                                                                                                                      

The use of Scipy integrators like dopri5 and others in 
accurately solving the Lane-Emden equation of a 
polytrope as a two-point BVP with fitting is investigated 
by comparing the Emden radius with the extended 
precision reference value obtained by Boyd's Chebyshev 
spectral method. It is found that both dopri5 and dop853 
integrators provide acceptable accuracy upto 14 decimal 
digits. 

Keywords: Lane-Emden equation, two point BVP with fitting 
method, Scipy ode solvers 

1. Introduction 

The Lane-Emden equation is a well known non-linear second order 
differential equation which describes the structure of a polytrope. 
The polytrope of index n is a massive gas sphere in a state of 
hydrostatic equilibrium and is governed by a pressure-density 

relation of the form𝑃 = 𝐾𝜌1+1 𝑛 . The theory of the polytrope is 
described in [1].  In the notation of [1] the Lane-Emden equation 
with its two point central (𝜉 = 0) and surface (𝜉 = 𝜉1) boundary 

conditions for the solution 𝜃 𝜉  and its slope  𝜃′ 𝜉   reads 
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  𝑑2𝜃 𝑑𝜉2 +  2 𝜉  𝑑𝜃 𝑑𝜉 + 𝜃𝑛 = 0;  𝜃 0 = 1;  𝜃′ 0 = 0;  𝜃 𝜉1 = 0                                                                                        
(1.1) 

where  𝜃(𝜉) is the  solution (aka Lane-Emden function) and 
0 ≤ 𝑛 ≤ 5 is the constant index for a given polytrope. The first zero 
of this solution denoted as  𝜉 = 𝜉1 yields the Emden radius of the 
polytrope. Now this is written as a system of two coupled first 
order ODEs  using  two new variables y and z defined by 𝑦 ≡ 𝜃 
and 𝑧 ≡ 𝑦′ = 𝑑𝜃 𝑑𝜉  as 

𝑑𝑦 𝑑𝜉 = 𝑧  ;  𝑑𝑧 𝑑𝜉 =  −2 (𝑧 𝜉) − 𝑦𝑛                                               (1.2) 

with the two-point BCs now reading as   𝑦 𝜉 = 0 = 1, 𝑧 𝜉 = 0 =
0  ;  𝑦 𝜉1 = 0, 𝑧 𝜉1 < 0 . The right hand sides of (1.2) are used for 
integrating the Lane-Emden equation from either center or  surface 
as the starting point. When the integration is started from the 
center (𝜉 = 0) a zero division singularity arises. This is avoided by 
fixing the value of the latter function in (1.2) from the slope of the 
power series expansion given by Equation (14) in [1] and repeated 
here: 

𝑧 =  𝑑𝜃 𝑑𝜉 =  − 1 3  𝜉 +  𝑛 30  𝜉3 −  𝑛 8𝑛 − 5 2520   𝜉5+. ..    (1.3) 

It can now be seen using (1.3) that  2(𝑧 𝜉) =  −2 1 3   as all other 
terms containing  𝜉 vanish at the center and inserting this into the 
second expression in (1.2) yields 𝑑𝑧 𝑑𝜉 =  −  1 3   for all values of 
index n since  𝑦 ≡ 𝜃 = 1 there. This value can also be found by 
differentiating (1.3) again and evaluating it at the center. This is 
taken care of in the computer script by inserting an if-else 
statement (see line numbers 11 to 20 in the Appendix).  

While there are many ways  of solving this two-point BVP the 
bidirectional shooting method is applied here so that it is 
integrated simultaneously outward from the center and inward 
from the surface of the polytrope towards a selected fitting point in 
between. As the exact value of the scaled radius is unknown this 
inward integration is started from a reasonably guessed value. The 
two integrations do not meet at the fitting point at all as they are 
like a directed shooting method. Therefore the difference between 
them at the fitting point is used to adjust the value of the scaled 
radius,( 𝜉), in a proportionate way and the two-way integration is 
repeated. In this manner many attempts (~ 30) are made before the 
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two integrations converge at the fitting point to within a set 
difference tolerance limit (like ~1.0e-14). This fitting point is set at 
90% of the radius so that the Lane-Emden function (𝜃(𝜉)) would 
have small values (𝜃 ≅ 0 ) characteristic of the polytropic envelope.  
The algorithmic step sequence for carrying out this plan is taken 
from [2] and briefly described below. 

2. Bidirectional iterative integration and fitting method 

The integration is carried out by using the python program 
le_fit.py [3] and modifying it where needed to achieve maximum 
accuracy. In order to start the inward integration of (1.2) from the 
surface let  3 ≤ 𝜉𝑠 ≤ 10  denote the  guessed value of the scaled 
radius which will finally converge to the Emden radius 𝜉1 and the 
slope at that point as  𝛼 < 0 (these are denoted as  xi_s, xi1 and 
alpha in the python script). The fitting point 𝝃𝒇𝒊𝒕 (xi_fit) is set as a 

fraction of 𝝃𝒔 (say, xi_fit = 0.9 xi_s). The integrator is chosen in 
turns to be one of  dopri5(), dop853(), vode() or lsoda() invoked 
from scipy.integrator.ode library. To maximize their accuracy the 
relative and absolute tolerance parameters were set to the 
minimum possible ( ~10−15 ). Now let y_in(𝝃𝒇𝒊𝒕)  and z_in(𝝃𝒇𝒊𝒕) be 

the arrays so obtained as outputs of inward integration from the 
surface upto the fitting point. Similarly, in the case of outward 
integration from the center upto the same fitting point, let 
y_out(𝝃𝒇𝒊𝒕)  and z_out(𝝃𝒇𝒊𝒕) be the arrays so obtained as outputs of 

the integrators. In order to match the respective inward and 
outward arrays at the fitting point the new functions  which are 
required to be zeroed are defined as 𝑌 𝛼, 𝜉𝑠  and 𝑍 𝛼, 𝜉𝑠  and given 
by 

𝑌 𝛼, 𝜉𝑠 ≡  𝑦𝑖𝑛 𝜉𝑓𝑖𝑡  −  𝑦𝑜𝑢𝑡  𝜉𝑓𝑖𝑡  = 0                                                 (2.1a) 

  𝑍 𝛼, 𝜉𝑠 ≡  𝑧𝑖𝑛  𝜉𝑓𝑖𝑡  −  𝑧𝑜𝑢𝑡  𝜉𝑓𝑖𝑡  = 0                                               (2.1b)  

The corrections needed are found  from Taylor series expansion as 

     𝑌 𝛼 + Δ𝛼, 𝜉𝑠 + Δ𝜉𝑠 =  𝑌 𝛼, 𝜉𝑠 +  
𝜕𝑌

𝜕𝛼
Δ𝛼 +

𝜕𝑌

𝜕𝜉𝑠
Δ𝜉𝑠  ~ 0               (2.2) 

     𝑍 𝛼 + Δ𝛼, 𝜉𝑠 + Δ𝜉𝑠 =  𝑍 𝛼, 𝜉𝑠 + 
𝜕𝑍

𝜕𝛼
Δ𝛼 +

𝜕𝑍

𝜕𝜉𝑠
Δ𝜉𝑠  ~ 0                (2.3) 



Mapana J Sci, 16, 1(2017)                                                            ISSN 0975-3303 

 

70 
 

To get the partial derivatives in (2.2) and (2.3) integrations 
indicated in (2.1) are now repeated once to get 𝑌 𝛼 + 𝑑𝛼, 𝜉𝑠  and  
𝑍 𝛼 + 𝑑𝛼, 𝜉𝑠  and again to get  𝑌 𝛼, 𝜉𝑠 + 𝑑𝜉𝑠  and 𝑍 𝛼, 𝜉𝑠 + 𝑑𝜉𝑠  so 
that they are computed as numerical differences given by 

                      𝜕𝑌 𝜕𝛼 =   𝑌 𝛼 + 𝑑𝛼, 𝜉𝑠 − 𝑌 𝛼, 𝜉𝑠  /Δ𝛼                  (2.4a) 

                      𝜕𝑌 𝜕𝜉𝑠 =   𝑌 𝛼, 𝜉𝑠 + 𝑑𝜉𝑠 − 𝑌 𝛼, 𝜉𝑠  /Δξs                (2.4b) 

                      𝜕𝑍 𝜕𝛼 =   𝑍 𝛼 + 𝑑𝛼, 𝜉𝑠 − 𝑍 𝛼, 𝜉𝑠  /Δ𝛼                  (2.5a) 

                      𝜕𝑍 𝜕𝜉𝑠 =   𝑍 𝛼, 𝜉𝑠 + 𝑑𝜉𝑠 − 𝑍 𝛼, 𝜉𝑠  /Δξs                (2.5b) 

The magnitudes of Δ𝛼 and Δξs  are adjusted to be as small as 
possible [2] by using a multiplying factor, eps typically set close to 
machine precision [3]. These steps are iterated for a number of 
times so that a good convergence is obtained in about 20 to 40 
iterations. At the end of each run there would be two outputs  xi_s 
and xi_in the average of which will be the required Emden radius 
xi1 and a third output for its slope at that point. There would also 
be a pair of two arrays comprising y_in (xi) and y_out (xi) and 
another pair comprising z_in (xi) and z_out (xi).  The entire 
procedure was repeated with each of the aforementioned integrator 
backends and the corresponding value of the Emden radius is then 
compared with the highly precise reference value taken from [4] or 
computed from [5]. The results will be discussed in the next 
section. A sample plot of fitting at first and 28th iterations for n = 3 
is shown in Figure 1. 

 

 

 

 

 

       

 

Figure 1 (left) First iteration and (right) 28th iteration of fitting y_out and z_out (dashed) with y_in 

and  z_in (solid line) for a n=3 polytrope. Notice that xi_s  is converging to its final value (~6.8968). 
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We can get the complete solution of the polytrope by correctly 
combining inward parts with outward parts got from the above 
fitting procedure. Additional tasks performed to do this are 
outlined here. Now 𝜃 = 0 at the polytropic surface from where the 
inward solution y_in(xi)  was found up to the fitting point whereas 
y_out(xi)  starts from the center and ends at the same fitting point. 
Hence to get the complete solution 𝜃(𝜉) (or, y(xi)) running 
smoothly from center to the surface of the polytrope, the inward 
part y_in(xi) is now reversed and then merged with the outward 
part y_out(xi)  after averaging out minute differences at the fitting 
point. Similarly the complete slope z(xi) is found by merging the 
reversed z_in(xi) array with z_out(xi)  array. Now from [1] we note 
that as 𝑇(𝜉)/𝑇𝑐 ≡ 𝜃 𝜉  this solution itself specifies the run of 
normalized temperature. Similarly we can find the normalized 
density 𝜌(𝜉)/𝜌𝑐  from  𝜃𝑛   and the normalized pressure 𝑃(𝜉)/𝑃𝑐  
from  𝜃𝑛+1. These parameters can be readily graphed in all-in-one 
plots as functions of normalized radius or normalized mass 
parameter and these show the structural properties of the given 
polytropic model. In order to do these computations a python 
function module Merge2Get_LEPol(npol, xi_out, xi_in, y_out, y_in, 
z_out, z_in) was  written and  added to the earlier integration script 
[3]. The combined script is listed in the Appendix. All other 
polytropic model parameters can then be computed from 
expressions given in [1].  

3. Discussion and Conclusion 

While doing the bidirectional integration with each of the four 
integrators mentioned above in turn for each polytropic index the 
resulting value of the Emden radius was noted and then compared 
with the corresponding reference value obtained using extended 
precision Python script [5] based on Boyd's Chebyshev Spectral 
method [4]. The values produced by the two step size adapting 
integrators dopri5() and dop853() were closest to the reference 
value with the smallest difference  and hence they are listed in 
Table 1.  It may be noted that dopri5 is based on a pair of 
embedded and optimized runge-kutta formulas of orders 5 and 4, 
found by Dormand and Prince, together with a dense output 
interpolation of order  4.  Here the order 5 method is used as a 
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proxy for the exact value to estimate the error of the order 4 
method which of course has a gross truncation error varying as the 
fourth power of the step size. If the error does not fall into a 
predetermined range relative to step size and problem scale then 
the step size is reduced or increased as needed so that the 
integration is steered to have a predetermined global error. 
Similarly dop853 method is based on a pair of embedded formulas 
of orders 8 and 5 combined with a dense output interpolation of 
order 7. 

 In the case of n = 3 polytrope the dopri5 result differs from the 

reference value by  2.3 × 10−15 whereas the dop853 result differs by 
3.05 × 10−14. In other cases the dop853 results differs less or even 
same as the result from dopri5. So the conclusion is that both these 
are suitable for use as integrators in this problem. If lower accuracy 
is acceptable the other two integrators may also be used. The 
preference for dopri5 is dependent on setting the fitting point 
(xi_fit) close to the surface at 90% of the Emden radius (xi_s) of the 
polytrope. This has the advantage that the fitting iterations 
converge quickly. In addition the inward and outward parts of the 
solution (y and z) at the fit point are almost equal and so the 
merger of the corresponding arrays has negligible error (a sample 
print out is given in the Appendix). Further the numerical 

difference factor eps should be set to  10−15 or so. This is fixed by 
trial and error so that the result is closest to the reference value 
shown in the second column of Table 1 at least upto first 14 digits. 

Table 1 Comparing Emden Radii  from dopri5() and dop853() with the Reference value from Boyd's 

Chebyshev Spectral Method 

 

 

The normalized all-in-one plot of the n = 3 polytrope is shown in 
Figure 2. To sum up it has now been shown that the method of 
solving the Lane-Emden equation as a BVP with fitting  as 
described above also leads to an accurate solution of the problem 
with the  use of the modified python script listed in the Appendix. 
This fitting method is similar to those widely used in professional 
stellar structure computations.                     

n Reference value  [4] dopri5() (this work) dop853() (this work) 

0.5   2.7526980540652   2.75269805406500634   2.75269805406500900 

1.0   3.1415926535897932   3.14159265358981177   3.14159265358980777 

1.5   3.6537537362191223   3.65375373621913013   3.65375373621912969 

2.0   4.35287459594612468   4.35287459594613413   4.35287459594613679 

2.5   5.35527545901077946   5.35527545901080337   5.35527545901080426 

3.0   6.89684861937696037   6.89684861937695803   6.89684861937699090 

3.25   8.01893752727151142   8.01893752727152176   8.01893752727152176 

3.5   9.53580534424485044   9.53580534424484583   9.53580534424487070 

4.0 14.97154634883809510 14.97154634883809621 14.97154634883809976 

4.5 31.83646324469428526 31.83646324469370725 31.83646324469442135 
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Figure 2 The n=3 polytrope structure as drawn against radius fraction (left) and mass fraction (right).  
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Appendix    

The source code listing of the complete Python script with line numbers is 
given below:      

    Python Script:      LaneEmdenSol_Fit.py 
1 # -*- coding: utf-8 -*- 
 from __future__ import division #, printfunction 
 import scipy  # scipy includes all of math and numpy! 

http://bender.astro.sunysb.edu/classes/stars/notes/models.pdf
http://bender.astro.sunysb.edu/classes/stars/notes/le-fit.py
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 from scipy.integrate import ode 
 import matplotlib.pyplot as plt 
  
 #Original Python Script by Mike Zingale has been taken from 
  #http://bender.astro.sunysb.edu/classes/stars/notes/le-fit.py   

( line Nos. 11 to 148) 
 #Additional Script added by M.N. Anandaram to output complete 

model. 
  
11 def rhs(xi, H, n): 
        """ input: [y, z];  output/return: [dy = z, d2y = dz] """ 
        y = H[0]; z = H[1] 
        dy = z 
        if (xi == 0.0):   
              d2y = -1.0/3.0     # <==> dz = (2.0/3.0) - y**n = 2/3 - 1 = -1/3 
        else: 
              d2y = -2.0 * z/xi - y**n    # dz 
  
20        return scipy.array([dy,d2y]) 
  
22 def le_integrate(xi_start, xi_end, H0, n): 
        # use the explicit (adams) integrator from the VODE package 
        #r = ode(rhs).set_integrator("vode", method="adams",   #"bdf" 
        #                       atol=2.e-15, rtol=3.e-14, nsteps=15000, order=12) 
        r = ode(rhs).set_integrator("dopri5",   #"dop853",  #"lsoda", 
                         atol=2.e-15, rtol=3.e-14) #, nsteps=15000) 
        r.set_initial_value(H0, xi_start) 
  
30        # pass n into the rhs() routine 
        r.set_f_params(n) 
        xi_out = [xi_start] # store starting values 
        y_out = [H0[0]] 
        z_out = [H0[1]] 
  
        # we want to know what the solution looks like on some regular 

grid 
        xi = scipy.linspace(xi_start, xi_end, 800) 
        iend = 1 
        if (xi_end > xi_start):         
40            while r.successful() and r.t < xi_end: 
                  r.integrate(xi[iend]) 
                  xi_out.append(r.t) 
                  y_out.append(r.y[0]) 
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                  z_out.append(r.y[1])             
                  iend += 1 
        elif (xi_end < xi_start): 
            while r.successful() and r.t > xi_end: 
                  r.integrate(xi[iend]) 
                  xi_out.append(r.t) 
50                  y_out.append(r.y[0]) 
                  z_out.append(r.y[1])             
                  iend += 1 
  
        return scipy.array(xi_out), scipy.array(y_out), scipy.array(z_out) 
  
 # initial guesses for the unknowns -- if we aren't careful with the 
 # guess at the outer boundary, we can get 2 roots.  Here we know 

that 
 # n = 1 has xi_s = pi 
 n = 3.0    # <--- Here choose any value of n like 0.5,1.,1.5,2.,3.,4.,4.5 or 

4.9 
60 if (n > 2.0):    xi_s = 10.0 
 else:    xi_s = 10.0 
 alpha = -0.15    # guesstimated slope dy/dxi at xi_s   (known that 

alpha < 0) 
 # set numerical differentiation factor (this multiplies alpha, xi_s) 
 eps = 5.0e-15 #eps = 1.0e-8 
  
 # main iteration loop 
 converged = 0 
 iterno = 1 
69 while not converged: 
70     # fitting point set here at 90% 
     xi_fit = xi_s * 0.9 
     # baseline integration 
     # outward from the center 
     H0 = scipy.array([1.0,0.0]) # y[0]= 1; y'[0] = 0 
     xi_out, y_out, z_out = le_integrate(0.0, xi_fit, H0, n) 
     # inward from xi_s 
     H0 = scipy.array([0.0,alpha])  # y[xi_s] = 0; y'[xi_s] = alpha 
     xi_in, y_in, z_in = le_integrate(xi_s, xi_fit, H0, n) 
     # the two functions we want to zero 
80     nin = len(y_in) 
     nout = len(y_out) 
     Ybase = y_in[nin-1] - y_out[nout-1] 
     Zbase = z_in[nin-1] - z_out[nout-1] 
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     # now do alpha + eps*alpha, xi_s 
     # inward from xi_s 
90     H0  =  scipy.array([0.0,alpha*(1.0+eps)]) 
     xi_in, y_in, z_in  =   le_integrate(xi_s, xi_fit, H0, n) 
  
     Ya = y_in[nin-1] - y_out[nout-1] 
     Za = z_in[nin-1] - z_out[nout-1] 
     # our derivatives 
     dYdalpha = (Ya-Ybase)/(alpha*eps) 
     dZdalpha = (Za-Zbase)/(alpha*eps) 
  
     # now do alpha, xi_s + eps*xi_s inward from xi_s 
100     H0 = scipy.array([0.0,alpha]) 
     xi_in, y_in, z_in = le_integrate(xi_s*(1.0+eps), xi_fit, H0, n) 
     Yxi = y_in[nin-1] - y_out[nout-1] 
     Zxi = z_in[nin-1] - z_out[nout-1] 
     # our derivatives 
     dYdxi_s = (Yxi-Ybase)/(xi_s*eps) 
106     dZdxi_s = (Zxi-Zbase)/(xi_s*eps) 
     # compute the correction for our two parameters 
     if (dZdxi_s - dZdalpha*dYdxi_s/dYdalpha == 0.0): 
           dxi_s = 2.0*dxi_s 
110     else: 
           dxi_s = - (Zbase - dZdalpha*Ybase/dYdalpha)/  (dZdxi_s - 

dZdalpha*dYdxi_s/dYdalpha) 
     dalpha = -(Ybase + dYdxi_s*dxi_s)/dYdalpha 
     # limit the changes per iteration 
     if (abs(dalpha) > 0.1*abs(alpha)): 
           dalpha = 0.1*abs(alpha)*scipy.copysign(1.0,dalpha) 
     if (abs(dxi_s) > 0.1*abs(xi_s)): 
           dxi_s = 0.1*abs(xi_s)*scipy.copysign(1.0,dxi_s) 
     #print "corrections: %3.10e, %3.10e, %3.16f " %(dalpha, dxi_s, xi_s) 
     alpha += dalpha 
120     xi_s += dxi_s 
     #print ("corrections: %3.10e, %3.10e, %3.17f " %(dalpha, dxi_s, 

xi_s)) 
     iterno += 1 
     print ("corrections: %3.10e, %3.10e, %3.17f " %(dalpha, dxi_s, 

xi_s)) 
      
     if (abs(dalpha) < eps*abs(alpha) and abs(dxi_s) < eps*abs(xi_s)): 
          converged = 1 
          print("\nLEEq solutions converge at xi_fit after %3d 
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iterations"%iterno)     
     #plt.figure() 
     plt.clf() 
130     plt.plot(xi_in, y_in, color="k",lw=2, label=r"$\theta$") 
     plt.plot(xi_out, y_out, color="k", ls="--",lw=2) 
     plt.plot(xi_in, z_in, color="b",lw=2, label=r"$\theta'$") 
     plt.plot(xi_out, z_out, color="b",lw=2, ls="--") 
     plt.grid() 
     plt.xlabel(r"$\xi$", fontsize=14) 
     plt.ylabel(r"$\theta,\, \theta'$", fontsize=14) 
     #plt.ylim(-0.02,1.02) 
     t = plt.title(r"solution of $\frac{1}{\xi^2}\frac{d}{d\xi}\left(\xi^2 

\frac{d\theta}{d\xi}\ \right) = -\theta^n$ via fitting") 
     t.set_y(1.05) 
140     ax = plt.gca() 
     plt.text(0.5, 0.90, "n = %3.2f polytrope, iteration # %d" % (n, 

iterno), 
              transform=ax.transAxes, fontsize=11, 

horizontalalignment="center") 
     plt.text(0.5, 0.85, "Emden radius, xi_s: %3.17f" %(xi_s), 
             transform=ax.transAxes, fontsize=11, 

horizontalalignment="center") 
     plt.text(0.5, 0.80, "fitting point: xi_fit / xi_s = %.3f"%(xi_fit/xi_s), 
             transform=ax.transAxes, fontsize=11, 

horizontalalignment="center") 
     plt.legend(loc="best", frameon=False) 
148     #plt.show() 
      
150 # The following was added by M.N. Anandaram to print all results 

at the  
 #  fitting point,to compute all the model solutions and show them as 

graphs 
 print "\nExamine both _in and _out solutions to merge them at the 

fitting point:" 
 print "xi_s  = %3.17f" %(xi_s) 
 print "xi_in = %3.17f" %xi_in[0] 
 print "xi1 = (xi_s+xi_in[0])/2 = %3.17f" %((xi_s+xi_in[0])/2); 
156 print "fitting point at xi = %3.17f"% xi_fit 
157 print "both in, out fitpoints same?: %3.17f ;  %3.17f"%(xi_out[-

1],xi_in[-1]) 
 print "theta at fitpoint: %3.17f;  %3.17f"%(y_out[-1],y_in[-1]) 
 print "theta' at fitpoint: %3.17f;  %3.17f"%(z_out[-1],z_in[-1]) 
 print "theta' = dtheta/dxi at xi1: %3.17f "%(z_in[0]) 
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161 print "[xi**2 * theta'] AT xi1 : %3.17f " %(xi_s**2*z_in[0]) 
  
163 def Merge2Get_LEPol(npol,xi_out,xi_in,y_out,y_in,z_out,z_in): 
        # merge xi_in, y_in, z_in vectors carefully with xi_out, y_out, 

z_out 
        xi_in = xi_in[:-1] # duplicate xi_fit point deleted 
        xi_in = xi_in[::-1] # reversed for merging with xi_out 
        xi = scipy.hstack((xi_out,xi_in)) # merged radius vector 
        # adjust smooth continuity of _in vectors at fitting point and 

then merge 
        adj_yout_yin_fit = y_out[-1] / y_in[-1] # ratio y_out/y_in at fit 

point 
170        print"adj_yout_yin_fit = %.17f"%adj_yout_yin_fit  #should be 

~= 1 
        #y_out[-1] = (y_out[-1] + y_in[-1])/2.0 # averaged at xi_fit point 
        y_in = adj_yout_yin_fit * y_in #adjust fit-point transition of y_in 
        y_in = y_in[:-1] # duplicate y_in[-1] point deleted 
        yxi = scipy.hstack((y_out, y_in[::-1])) # reversed y_in merged 

with y_out 
        adj_zout_zin_fit = z_out[-1] / z_in[-1] # ratio z_out/z_in at fit 

point 
        print"adj_zout_zin_fit = %.17f"%adj_zout_zin_fit #should be ~= 

1 
        #z_out[-1] = (z_out[-1] + z_in[-1])/2.0 # averaged at xi_fit point 
        z_in = adj_zout_zin_fit * z_in #adjust fit-point transition of z_in 
        z_in = z_in[:-1] # duplicate z_in[-1] point deleted 
180        zxi = scipy.hstack((z_out, z_in[::-1])) # reversed z_in merged 

with z_out 
        # compute mass fraction from xi,zi; density and pressure 

fractions from yi      
        mxi = xi*xi*zxi # mxi = xi^2.dtheta = M(xi) / [4*pi* (r_n)^3 * 

rho_c] 
        rhoxi = yxi**npol  # density fraction, theta**n = rho(xi) / rho_c  
        pgasxi = yxi**(npol+1.0) # pressure fraction, theta**(n+1) = P(xi) 

/ P_c  
        return ( scipy.array(xi), scipy.array(mxi), scipy.array(yxi), 
                            scipy.array(rhoxi), 

scipy.array(pgasxi),scipy.array(zxi) )  
 #Now get polytrope model data: (Rxi and Mxi not normalized here)       
 Xi,Mxi,Txi,Dxi,Pxi,Zxi   =   

Merge2Get_LEPol(n,xi_out,xi_in,y_out,y_in,z_out,z_in) 
 G = 6.67259e-8;   Msun = 1.989e33;   Rsun = 6.9599e10;   Lsun = 

3.826e33; 
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190 mass = 1.0;   rad = 1.0;   Xi1 = Xi[-1];   Zxi1 = Zxi[-1];   Mxi1 = Mxi[-1] 
 Pc = 9.048e+14 * mass * mass / rad**4 /(n + 1.0) / Zxi1**2 
 #D_mean = Msun/(4*pi/3)/Rsun**3 # 
 D_mean = 1.408436186 * mass / rad ** 3 
 Dc = D_mean * (- Xi1 /Zxi1 / 3.0) 
 alpha_n = rad / Xi1  # Radius scaling Factor 
 GBE = -3.80e+48 * 3.0/(5.0-n) * mass * mass / rad 
 print "-------------------------------------------------------------------" 
 print " The basic properties of the Lane-Emden Polytrope are : " 
 print "-------------------------------------------------------------------" 
200 print " Polytropic index selected       : ", n 
 print " Radius parameter(Xi1)           : %.17f" %(Xi1) 
 print " Radius scaling Factor, alpha_n  : %.14f " %(alpha_n) 
 print " Slope, [dtheta/dxi] AT Xi1      : %.17f" %(Zxi1) 
 print " Mass parameter, [Xi1**2*Zxi1]   : %.17f" %(Mxi1) 
 print " Central Pressure (Pc)           : ", Pc 
 print " Central density (Dc)            : ", Dc 
207 print " EOS Constant, K=Pc/Dc**(1+1/n)  : %.14e " 

%(Pc/Dc**(1.0+1.0/n)) 
208 print " Mean density (D_mean)           : ", D_mean 
 print " Central Condensation, Dc/D_mean : ", Dc/D_mean 
210 print " Binding Energy (GBE)            : ", GBE  
 print "--------------------------------------------------------------------" 
 # Rx and Mx are now normalized here 
 Rxf = Xi/Xi1 # max(Rx) # get radius fraction (normalized radius) 

here 
 Mxf = Mxi/Mxi1 # mass fraction (normalized mass) M(xi) / M  

where  M == M(xi1) 
 # and show them as all-in-one plots vs Radius fraction 
 plt.figure(figsize=(12,6)) #(7,10)) 
 plt.subplot(121) #(211) 
 plt.plot(Rxf,Txi,"k",lw=2,label=r"$\theta(\xi)=T/T_c$"); 
 plt.plot(Rxf,Dxi,"b",lw=2,label=r"$\theta^n=\rho/\rho_c$") 
220 plt.plot(Rxf,Pxi,"k-.",lw=3,label=r"$\theta^{n+1}=P/P_c$") 
 plt.plot(Rxf,Mxf,"k--",lw=2,label=r"$M(\xi)/M$") 
 plt.xlim(-0.02,1.02); plt.ylim(-0.02,1.02) 
 plt.title(r"$n = %.2f$ Polytropic Model"%n) 
 plt.xlabel(r"Radius fraction, $\xi/\xi_1=r/R$") 
 plt.ylabel(r"$\theta,\theta^n,\theta^{n+1},M(\xi)/M$", 

fontsize=14) 
 plt.grid();plt.legend(loc="best", frameon=False) 
 # also show them as all-in-one plots vs Mass fraction 
 plt.subplot(122)  #(212) 
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 plt.plot(Mxf,Txi,"k",lw=2,label=r"$\theta(\xi)=T/T_c$") 
230 plt.plot(Mxf,Dxi,"b",lw=2,label=r"$\theta^n=\rho/\rho_c$") 
 plt.plot(Mxf,Pxi,"k-.",lw=3,label=r"$\theta^{n+1}=P/P_c$") 
 plt.plot(Mxf,Rxf,"k--",lw=2,label=r"$\xi/\xi_1=r/R$") 
 plt.xlim(-0.02,1.02); plt.ylim(-0.02,1.02); 
 plt.grid();plt.legend(loc="best", frameon=False) 
 plt.title(r"$n = %.2f$ Polytropic Model"%n) 
 plt.xlabel(r"Mass fraction, $M(\xi)/M$") 
 plt.ylabel(r"$\theta,\theta^n,\theta^{n+1},r/R$") 
238 plt.show() 
 




