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Abstract 

The boundary layer flow of ferrofluid over a stretching 
sheet with heat source is considered. It is assumed that 
the magnetic field is sufficiently strong enough to 
saturate the ferrofluid and the variation of magnetization 
with temperature can be approximated by a linear 
function of temperature difference. The boundary layer 
approximation is used and the transformed governing 
differential equations are solved using the Shooting 
technique based on Runge - Kutta Fehlberg and Newton 
Raphson methods. The effects of various parameters on 
velocity profiles and wall heat transfer are presented 
graphically. The results have possible industrial 
applications in liquid based systems involving stretchable 
materials.  
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1. Introduction 

An interesting fluid mechanical application is found in polymer 
extrusion processes, where the object on passing between two 
closely placed solid blocks is stretched into a liquid region. The 
stretching imparts a unidirectional orientation to the extradite, 
there by improving its mechanical properties [1]. 

Ferrofluids are artificially synthesized and consist of highly 
concentrated colloidal suspensions of fine magnetic particles in a 
non-conducting carrier fluid. The resulting fluid behaves like a 
normal fluid except that it experiences a force due to the 
magnetization. Further, the magnetization of the ferrofluid 
depends upon the temperature. This thermo magnetic coupling 
makes ferrofluids useful in various practical applications, see e.g. , 
[2] and [3]. Siddheshwar and Abraham [4,5] studied the  Effects of 
boundary temperatures/body force on Rayleigh-Benard 
convection in a ferromagnetic fluid. 

The two classical problems in fluid mechanics, namely the Blasius 
boundary layer flow along a flat plate and the stagnation point 
flow were extended for a saturated ferrofluid under the combined 
influence of thermal and magnetic field gradients by Neuringer [6]. 
The flow of a viscous fluid past a linearly stretching surface in 
otherwise quiescent surroundings was first considered by Crane [7] 
for a Newtonian fluid and subsequently extended to fluids obeying 
non-Newtonian constitutive equations.  Andersson and Valnes [8] 
extended Crane’s problem by studying the influence of the 
magnetic field, due to a magnetic dipole, on a shear driven motion 
(flow over a stretching sheet) of a viscous non-conducting 
Ferrofluid. The fluid flow was formulated as a five parameter 
problem and the influence of the magneto–thermomechanical 
coupling was explored numerically. It was concluded that the 
primary effect of the magnetic field was to decelerate the fluid 
motion as compared to the hydrodynamic case.           

The difficulties encountered in using shooting technique are 
mentioned in [9], such as boundary value problems involving 
infinity, its sensitivity to the choice of the missing initial conditions 
and the inherent instability. In Abel et al [10] detailed explanation 
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on not only the shooting technique applied to boundary value 
problems involving a boundary at infinity but also a scientific 
method of choosing initial values is given. 

Siddheshwar and Mahabaleswar [11] studied the effects of 
radiation and heat source on MHD flow of a viscoelastic liquid and 
the governing differential equations were solved analytically.  
Studies on the flow of viscoelastic fluid over a stretching sheet 
were also reported by Anderson [12], Abel et al. [13, 14] and 
Arnold et al. [15] 

In this paper the influence of the magnetic field due to magnetic 
dipole on the shear driven motion of a viscous and non- 
conducting ferrofluid due to stretching is explored. The focus of 
attention shall be on the magneto thermo-mechanical interaction 
and heat transfer at the stretching sheet. 

2. Mathematical formulation of the problem  

A steady two-dimensional flow of an incompressible, viscous and 
electrically non-conducting ferrofluid driven by an impermeable 

stretching sheet is considered. The flow is caused by the action of   
two equal and opposite forces along the horizontal direction which 

 
Figure 1: Schematic representation of flow configuration. 
The broken lines represent the magnetic field 



Mapana J Sci, 10, 1(2011)                                  Boundary Layer Flow of Ferrofluid 

17 
 

is taken as the -axisx , and the direction normal to the flow as the y-
axis. The sheet is stretched with a velocity u(x) which is 
proportional to the distance from the origin. A magnetic dipole is 
located some distance below the sheet. The centre of the dipole lies 
on the y-axis at a distance ‘a’ below the x-axis. Its magnetic field 
points in the positive x-direction and the strength of the magnetic 
field is sufficient to saturate the ferrofluid. The stretching sheet is 
kept at a fixed temperature Tw below the Curie temperature Tc , 
while the fluid elements far away from the sheet are assumed to be 
at temperature T = Tc and hence incapable of being magnetized 
until they begin to cool upon entering the thermal boundary layer 
adjacent to the sheet. 

The equations governing the flow and heat transfer in a ferrofluid 
are as follows: 
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where u and v are the velocity components along x and y directions 
respectively,  is the fluid density,   the dynamic viscosity, 




  the kinematic viscosity, Cp specific heat at constant pressure, 

k the thermal conductivity, 0 the magnetic permeability, M the 
magnetization, H the magnetic field, T the temperature of the fluid 
and Q the heat source (sink). 
The assumed boundary conditions for solving the above equations 
are 
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The flow of ferrofluid is affected by the magnetic field due to the 
magnetic dipole whose magnetic scalar potential is given by  
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where   is the dipole moment per unit length.   
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Since the magnetic body force is proportional to the gradient of the 

magnitude of H, we obtain from 
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Variation of magnetization M with temperature T is approximated 
by a linear equation    M = K ( Tc – T )                (9) 
where K is the pyromagnetic coefficient 

3. Solution Procedure 

We shall now introduce the non - dimensional variables 
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In order to convert the partial differential equation (1), (2) , (3) and 
(4) into ordinary differential equation the following similarity 
transformation is used. 

 , ( )f           (12) 

The velocity components U and V are related according to 
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where the prime denotes differentiation with respect to   and 
                                                                                

We obtain the following boundary value problem 
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  f(0) = 0, f  (0) =1, 1 2(0) 1, (0) 0    at   = 0   (18)        

 ' 0f  , 1 0  , 2 0    as   .    (19)                           

The six dimensionless parameters, which appear explicitly in the 
transformed problem, are the Prandtl number Pr, the viscous 
dissipation parameter  , the dimensionless Curie temperature  , 
the ferrohydrodynamic interaction parameter , the heat 
source/sink parameter Qs and  the  dimensionless distance   from 
the origin to the center of the magnetic pole, defined respectively as 



Annamma Abraham and  L. S. Rani Titus                                  ISSN 0975-3303 

20 
 

Pr pC
k


  ,      (20) 

2

( )c w

c
k T T








,     (21) 

c

c w

T
T T

 


,      (22) 

02

' ( )
2 c wK T T  


      (23) 

s
p

QQ
c C

       (24) 

1
2 2c a


 

  
 

.      (25) 

The local skin friction coefficient fC , which is a dimensionless 
form of the shear stress  at the sheet is given by  
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 and the local heat flux as the local Nusselt number is as follows 
1

22
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The three coupled differential equations (15) to (17) subject to the 
boundary conditions (18) and (19) constitute a non – linear two – 
point boundary value problem, which is solved by means of a 
standard shooting technique. The higher order ODEs are 
formulated as first – order equations and the resulting set of seven 
first – order equations can be integrated as an initial value problem 
using the adaptive stepping Runge - Kutta - Fehlberg method. Trial 
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values of ' 'f (0), '
1θ (0), '

2θ (0) were adjusted iteratively by Newton 
Raphson‘s method to assure a quadratic convergence of the 
iterations required in order to fulfill the outer boundary conditions 
(19). 

 

4. Results and discussion 

The magnetic effects on the flow are indicated by the single 
parameter β. When β = 0 the magnetic effects disappear and the 
momentum and energy equations decouple. The effects of β on 
velocity and temperature when the heat source/sink parameter 
Qs= -0.5 are shown in figure 2(a). The influence of β on the velocity 

field is the reduction in f‘ for increasing β. This transverse 
contraction of the velocity boundary layer is due to the applied 
magnetic field, which counters the motion. Hence β has a 
regulating effect on the fluid as it regulates the velocity of the flow. 
The increased skin friction due to the effect of β on the velocity 
profile enhances the heat transfer. Thus the effect of β on the 
temperature profile is the increase in θ1 for increasing β as shown 
in figure 2(b).  
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Figure 2: Effect of Ferrohydrodynamic interaction parameter   on Velocity 
and temperature profile 
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Figure 3(a) and 3(b) illustrate the effect of the Prandtl number Pr on 
velocity and temperature profiles respectively. When Pr number is 
large the velocity boundary layer is thick compared to the 
temperature boundary which decreases the magnitude of θ(η), thus 
reducing the heat transfer. From figure 4 the effect of internal heat 
generation (source/sink) is to dampen or enhance the heat 
transport in a linear fashion. 

In the presence of the heat sink the decrease in the velocity profile 
is more for the increasing values of β as compared to that in the 
presence/absence of heat source. Thus Qs enhances or dampens 
the effect of β depending on whether Qs is a sink or a source. 
Consequently the variation in temperature is more pronounced for 
the increase in β in case of sink as compared to source. 
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Figure 4:   Effect of Qs on Velocity and temperature profiles 
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Hence it can be concluded that the presence of heat source (sink) 
controls the effect of the magneto-thermomechanical interaction 
which decelerates the flow along the stretching sheet thereby 
influencing the heat transfer rate. 
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