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Abstract 

Graph Theory is one branch of Mathematics that laid the 
foundations of the structural studies in Chemistry. The 
fact that every molecule or compound can be represented 
as a network of vertices (elements) and edges (bonds) 
provoked the question of the predictability of the physical 
and chemical properties of molecules and compounds. 
Spectrum, π-electron energy, Spectral Radius etc. are 
predictable using graph theoretical methods. This is an 
introductory paper about spectrum and energy of 
molecular graphs. 
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1. Introduction 

The fascinating world of graph theory goes back several centuries 
and revolves around the study of graphs- mathematical structures 
showing relations between objects. The origin of Graph Theory and 
Topology dates back to when the famous Swiss Mathematician 
Leonhard Euler (1707 - 1783) solved the Konigsberg Bridge Problem in 
1736. Since then, the subject has grown both in its theory and its 
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varied applications. The celebrated 4 Color Problem which was a 
major unsolved problem since 1852 and its unique method of 
solution using computers in 1976 - the first of its kind in 
Mathematics, also belongs to Graph Theory. Graphs can be used to 
model many types of relations and processes in chemical, physical, 
biological, social and information systems. 

The skeletal formula of a molecule is nothing but a graph. This 
means that any compound or molecule can be represented as a 
graph. However, many graphs do not have a corresponding 
molecule or compound. The molecular formula of methanol 
(methyl alcohol) is CH3OH. The skeletal formula and the respective 
graph are given in Figure 1 and Figure 2, respectively. 

Graphs can also represent compounds with doubled bonds by 
parallel edges. The Kekulé structures of benzene and the 
corresponding graphs are given in Figure 3 and Figure 4. 

In the 1930's Erich Hückel [2] proposed the famous Hückel 

Molecular Orbital Theory (HMO). The conjugated hydrocarbon 
can be represented by a graph called molecular graph according to 
the rule: every carbon atom is represented by a vertex and every 
carbon-carbon bond by an edge, hydrogen atoms are ignored. The 
eigenvalues of the molecular graph represent the energy level of 
the electron in a molecule. In HMO approximation, the energy of 
the ith molecular orbital is given by 𝐸𝑖  =  α + 𝜆𝑖β, where  and  
are constants (The method assumes that the Hamiltonian operator 
is a simple linear combination of certain orbitals, and uses the time-
independent Schrodinger equation to solve for the energies 
desired). 

 
Figure 1                                     Figure 2 
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The total π-electron energy (𝐸) is equal to the sum of the energies of 
all π-electrons that are present in the respective molecule, -i.e., 
𝐸 =  𝑔𝑖𝐸𝑖

𝑛
𝑖=1  𝑔𝑖𝜆𝑖

𝑛
𝑖=1 , where 𝑔𝑖  is the number of electrons in the 

ith molecular orbital (whose energy is 𝐸𝑖). 

2. Spectral Graph Theory 

Spectral graph theory is a study of the relationship between the 
topological properties of a graph with the spectral (algebraic) 
properties of the matrices associated with the graph. Originally, 
spectral graph theory analyzed the adjacency matrix of a graph, 
especially its eigenvalues. One of the main motivations behind 
spectral graph theory is to establish connections of the graph‟s 
intrinsic structures, such as connectivity, diameters, embeddability, 
chromatic numbers, with the spectra of various associated matrices, 
such as the adjacency matrix, the incidence matrix, and the 
Laplacian matrix, to name a few. 

 
Figure 3 

 
Figure 4 
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The spectral theory of graphs emerged as an active research 
frontier in graph theory since the 1950s. Collatz and Sinogowitz 
first began the exploration of this topic in 1957.[29] It has since then 
had a major impact on combinatorics, computer science, operations 
research, biology, and social science.   

In spectral graph theory, let G be a finite undirected simple graph 
with vertex set V(G) and edge set E(G). The order of G is the 
number of vertices in G. A graph of order n is also called an n-
vertex graph. The size of G is the number of edges in G. Let G(n,m) 
denote  an arbitrary graph of order n and size m. The adjacency 

matrix A(G) of the graph G is a square matrix of order n, whose (i, 
j)-entry is equal to 1 if the vertices vi and vj are adjacent and equal 
to zero otherwise. The characteristic polynomial of the adjacency 
matrix, i.e., det(λIn –A(G)), where In is the unit matrix of order n, is 
said to be the characteristic polynomial of the graph G and will be 
denoted by φ(G, λ).  

From linear algebra it is known that the graph eigenvalues 

λ1 ,  λ2 ,   . . .  , λn  are the solutions of the equation 𝜑(𝐺, 𝜆)  =  0. The 
eigenvalues of the adjacency matrix A(G)  form the spectrum, 

spec(G), of the graph. If the distinct eigenvalues of G are 

λ1 ,  λ2 ,   . . .  , λmwith multiplicities 𝑡1,     𝑡2     …  𝑡𝑚  respectively, then, 

spec(G) is written as  λ1   λ2    ...  λm
𝑡1     𝑡2     … 𝑡𝑚

  or λ1
t1 ,  λ2

t2 ,   . . .  , λm
tm  . The sum 

of all eigenvalues, being the trace of the adjacency matrix is zero. 
The largest eigenvalue of a graph is also known as its spectral 

radius. Since A is real and symmetric, all its eigenvalues are real. 
Multiplicity of λ as a root of the equation det (A- λ In) =0 is equal to 
the dimension of the space of the eigenvectors corresponding to λ.  

Generalization of the formula valid for the total π-electron energy 
of a conjugated hydrocarbon calculated by the HMO method was 
given by Ivan Gutman [2] in the late 1970s who defined the energy 

E(G) of a graph G as the sum of the absolute values of its 
eigenvalues. Gutman conjectured that among all graphs of order n, 
the complete graph Kn has maximum energy. H. B. Walikar 
disproved Gutman's conjecture and produced graphs whose 
energy exceed that of Kn and called such graphs as hyperenergetic. 
We call an n-vertex graph G hypoenergetic if E(G) < n and 



Ann, Kalayathankal and Kureethara   Spectrum and Energy of Molecular Graphs 

21 

 

 

hyperenergetic if E(G) > 2(n – 1). The first systematic construction 
of hyperenergetic graphs was proposed by Walikar, Ramane, and 
Hampiholi [2], who showed that the line graphs of Kn , n ≥ 5, and of 
Kn/2,n/2 , n ≥ 8, are hyperenergetic. Two nonisomorphic graphs are 
said to be equienergetic if they have the same energy. If the spectra 
of two graphs are identical, then the graphs are said to be 
cospectral. It has been proved [4] that if the energy of a graph is 
rational then it must be an even integer. If G is a k-regular graph on 

n vertices, R. Balakrishnan [3] proved E(G) ≤ k +  k(n − 1)(n − k) 

=  B2, a sharp bound. He also proved that for each ∈ > 0, there exist 
infinitely many n for each of which there exists a k-regular graph G 
of order n with k < n − 1 and E(G)/B2 < ∈. Energy of cluster and 

bipartite cluster graphs [26, 27] have been determined by H. B. 
Walikar and H. S. Ramane, where a cluster graph has large number 
of edges. 

3. Spectrum, Energy and Spectral Radius of Some Graphs 

The spectrum, energy, spectral radius of some class of graphs are 
listed below:  

 The eigenvalue of an empty graph is zero. [2] 

 The spectral radius of a k-regular graph (all vertices have 
degree k) is k. [2] 

 If G is a connected graph, then the spectral radius is less 
than or equal to the largest degree of the graph. [29] 

 The adjacency matrix of a bipartite graph has the form A = 

 
0 𝐵
𝐵𝑇 0

 . It follows that the spectrum of a bipartite graph is 

symmetric w.r.t. 0: if [u v] is an eigenvector with eigenvalue 
θ, then [u  -v] is an eigenvector with eigenvalue − θ. [1] 

 The spectrum of complete graph Kn on n vertices is (n−1)1, 
(−1)n−1 and energy is equal to 2(n – 1). [1] 

 The spectrum of complete bipartite graph Km,n is 01, mn−1, 
nm−1, (m+n)1. [1] 
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 The energy of the complete bipartite graph Kn-1,1 , also 

known as the star [2] is 2 𝑛 − 1. [2] 

 The spectrum of the n- cycle is 2cos(2πj/n) (j = 0, . . . , n−1). 
[1] 

 The spectrum of the path Pn on n vertices is 2cos(π j/(n + 1)) 
( j = 1, . . . ,n). [1] 

4. Method to compute graph energy 

A classical result of the theory of graph energy [2] is that E(G) can 
be computed from the characteristic polynomial of G by means of 
Coulson Integral Formula, 

E(G) = 
1

π
  n −

ixφ ′ (G,ix)

φ(G,ix)
  dx

∝

−∝
, 

where φ'(G, λ) denotes the first derivative of φ(G, λ). 

5. Different Graph Energies 

There have been several recent attempts to extend the graph-
energy concept to eigenvalues of matrices other than the adjacency 
matrix. Especially much work has been done on the so-called 
Laplacian graph energy based on the spectrum of the Laplacian 
matrix. The Laplacian is an alternative to the adjacency matrix for 
describing the adjacent vertices of a graph. The Laplacian, L, of a 
graph is the square matrix that corresponds to the vertices of a 
graph. The Laplacian can be derived from D – A, where D is the 
diagonal matrix whose entries represent the degrees of the vertices, 
and A is the adjacency matrix. The smallest eigenvalue of L is 0. 
The multiplicity of 0 as an eigenvalue of L is the number of 
connected components in the graph. The Laplace spectrum of a 
finite undirected graph without loops is the spectrum of the 
Laplace matrix L. Since L is real and symmetric, the Laplace 
spectrum is real.  

A concept called distance energy [21] of graphs was introduced by 
Gopalapillai Indulal, Ivan Gutman and Ambat Vijayakumar. The 
distance matrix D = D(G) of G is defined so that its (i, j)-entry is 
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equal to dG(vi, vj) , the distance (= length of the shortest path) 
between the vertices vi and vj of G. The D-eigenvalues of a graph G 
are the eigenvalues of its distance matrix D, and form the D-
spectrum of G. The D-energy ED(G) of the graph G is the sum of the 
absolute values of its D-eigenvalues. Two graphs are said to be D-
equienergetic if they have equal D-energies. Bounds for the 
distance spectral radius [21] and Distance energy of graphs of 
diameter 2 were calculated. The D-spectrum of the cartesian 
product [22] of two distance regular graphs, lexicographic product 
G[H] of two graphs G and H when H is regular, Hamming graphs 
Ham(d; n) of diameter d and order nd and those of the C4 nanotori 
Tk,m,C4 , of the join of regular graphs [23], of some self-
complementary graphs [24], of the neighbourhood corona, G1*G2 
[25] where G1*G2 is the graph obtained by taking n copies of  graph 
G2 and for each i , making all vertices in the ith copy of G2 adjacent 
with the neighbours of vi from the  vertex set {v1 , v2 , …,vn } of G1 
have been studied. 

Yang et al. (1994) [28] defined the extended adjacency matrix A ex 

of G whose ( i , j )-entry is equal to 
1

2
 (

d i

d j
+

d j

d i
) if the vertices vi and vj 

are adjacent, and 0 otherwise,. A very recent work was done by 
Kinkar Ch. Das, Ivan Gutman, Boris Furtula who examined the 
lower and upper bounds on spectral radius and the energy E ex of 
the A ex -matrix .  

Apart from the above defined energies, depending on the matrix, 
the concept of color energy [5], minimum covering energy [6], 
reduced color energy [7, 8], minimum degree energy [9], maximum 
degree energy [10], minimum neighbourhood energy [11], 
common–neighborhood energy [12], non-common neighbourhood 
energy [13], labeled graph energy [14], minimum dominating seidel 
energy [15], maximum eccentricity energy [16] of a graph were 
introduced. Basic properties of the corresponding energy were 
studied and the bounds were determined.   R. Khanna, B. N. 
Dharmendra and G. Sridhara [11] are the authors of the papers on 
minimum dominating distance energy, minimum dominating 
energy and Laplacian minimum dominating energy of a graph. C. 
Adiga , R. Balakrishnan, Wasin So showed [17]  interest to study 
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about the energy of the skew-adjacency matrix of a directed graph 
D. C. Adiga and M. Smitha [18] studied the skew Laplacian energy 
of a simple, connected digraph. The minimal value of this energy in 
the class of all connected digraphs on n ≥ 2 vertices was 
determined. 

6. Construction of Equienergetic graphs 

Pairs of equiregular distance equienergetic graphs of diameter 2, on 
p = 3t + 1 vertices were constructed. Pairs of connected, non 
cospectral, equienergetic graphs with equal number of vertices, 
equal number of edges have been constructed by H. S. Ramane et al 
[19]. Again, H. S. Ramane et al. [20] constructed pairs of connected, 
noncospectral, equienergetic graphs of order n for all n ≥9. Two 
non cospectral equienergetic graphs [3] of order 4n, where n is a 
positive integer ≥ 3 have been constructed. 

7. Applications    

Spectral Graph theory is an important multidisciplinary area of 
science that uses the methods of Linear Algebra to solve problems 
in Graph Theory and, on the other hand, it has been used to model 
and treat problems in Chemistry, Computer Science, Physics, 
Operational Research, Combinatorial Optimization, Biology, 
Bioinformatics, Geography, Economics and Social Science, among 
others. Spectral graph theory is used in the study of DNA. A 
molecule of DNA is a very long string consisting of a unique 
sequence using four amino acids. The goal is to determine this 
sequence for a given molecule of DNA. These methods employ 
spectral ordering involving the Laplacian and permuted matrices. 
Graph spectra appear in internet technologies, pattern recognition, 
computer vision and in many other areas. One of the oldest 
applications (from 1970‟s) of graph eigenvalues in Computer 
Science is related to graphs called expanders. The Laplacian 
eigenvalues determine the kinematic behavior of a liquid flowing 
through a system of communicating pipes. The basic behavior of 
the flow is determined by the second smallest Laplacian 
eigenvalue. The second largest eigenvalue of a graph gives 
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information about expansion and randomness properties. The 
smallest eigenvalue gives information about independence number 
and chromatic number. Interlacing gives information about 
substructures. The fact that eigenvalue multiplicities must be 
integral provides strong restrictions.  
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