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ABSTRACT

In this paper we determine neighborhood results and partial sums for
certain closs of meromorphic univalent functions with positive
coefficients defined by Ruscheweyh derivatives.
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1. Introduction

Let M denctes the class of functions of the form

flz) =+ ;a (1)
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which are regular and univalent in the punciured disc E={z: 0 < |z | < 1} A
function f z) belonging to M is said to be meromorphically starlike of order « if it
satisfies

~zf'(z)
Re{ 2) }:»a

forsome g {0<a <)) andall zeU ={z:|z|<}. We dencte M{a) the class of

all meromorphically starlike functions of order ¢. The class M{e) and related
classes have been extensively studied in [2, 5, 6, 8].

Let M{e,A, A,B) denote the class of functions fin M satisfying the condition

22(D*(z)'+1

Bz2(DM(z))'+ A (1.2)

for some @>0,-1<8<A<1 and |Ba|<1 and for all zeU, where
D* : M - M is the operator defined by

DHle) = ——Lx*a), (2>, (1.3)

From the identity

1 a2 22
-2 7 (1= -2+ z(-2PF (A +Y)°

We get
Z{D*(z)) = (A+TD*f{z) - (A +2D*{z), A>-1 (1.4)

ForA=neN,={0,1,2.....} we note that the relation (1.3) moy be expressed
as
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DH(e) =+ + 38,202,
k=1

where
_AFHA+2)(A+3).. (A +k-1)
Bi(4)= {k+1!
Afunction
T < k
f(2)=-z-+§0klz €M ‘ (1.5)

is said to be in the class M*(a, A, A,B) if it satisfies the condition (1.3) with
-158<50.

The main object of this paper is to present o systematic investigation of various
properties of the general class M*(a, 4, A, 8) and to determine neighborhood results

and partial sums for the general class of meromorphic univalent functions with
positive coefficients.

2. Properties of the class M*(a, A, A,B)

Theorem 1. Let f(z) = ! + i| o, [z be analytic and univalent in U. Then flz) e
Zz k=1 : .

M*(a, A, A,B) if and only if

< ki-Ba) '
;a(A_B)Bk(’l)lckJS]' (2.1)

The result is sharp for the funcﬁon i(z) given by

1y _alA8)
o=+ e 22
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Proof. Let fz) = + 3o, |2* € M*(,4,4,8). Then
Z k=l

2DM(z)) + 1
BZAD™y + A

Substituting for (D*f(z))', we get

zz(:-; + ikBk (ﬂ.}akz*"J +1

z

[_—zf‘, akz) + A

<

That is,

| 548, (Ao, 2"

k=1

- <a '
‘(A - B)+ ¥ BkB,(A)z* 2.3)

k=1

Since |Relz}| |z} for any z, choosing values of zto be real, (2.3) yields

Ski-Ba)B Ml a, | < ol -B)
k=t

On other hond if we let z € 9E, then we find that

5 kB, (A)
' ZZ(DAF(Z))I'F] | . g km 1o o

B2 0 + AL 4 gy 1 ks (a)

Finally, by observing that the function f(z} given by (2.2) is indeed an extremal
function for the assertion (2.1), which completes the proof of Theorem 1.
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The following theorem is an easy consequence of Theorem 1.
Theorem 2. Let each of function f(z) defined by

=7+ Bla, 12 (i=1,2,3.) 2.4

be in the closs M*(a, 4, A,B). Then the furiction h(z) defined by
hlz)= Soufla) (w20 and Y =) (2.5)
i=1 i=1
is also in the class M*(a, A, A, B).
Theorem 3. Let fz} e M*(a, 4, A,B) then we have f(z) is meromorphically star-
like of order § in | z|<r, that is
Re -2z} > 8, (|z]<n,when 058 < 1)
f{z)

1

; {B ) ku—a}u—ms)}ﬁ
{A-B)ik +6)

The result is sharp for the function (z) given by (2.2).

Proof. From Theorem 1, we have

il < Sawt=Bg <121 <
Thereforefor | z| < 1,

g ] | g

Z;(‘; (i~ 25)' B 12(1-5}-5‘,(k—(1—25))°k2"

Z(k +1B, (A}l o, Il 2 |k+1
= k=1 pon < ]
21-8)- ¥ (k-1+28)| q, || [*
k=1

which implies that (2.6) is true.
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3. Neighborhoods

The concept of neighborhood of analytic functions was first infroduced by Goodman
[4] and then generalized by Ruscheweyh [9]. In this section we shall extend the
concept of neighborhoods to meromorphic univalent functions.

For §20,-1sB<A<1and f(z}=‘l+ia,¢z" € M. We define neighborhood of
Z kel

flz) by

Ns(f) = Ny(fa, A, A, B)

_ 1 e k-8 a) _
= {g[z)hz+§0kz EM.H—-—-——-a(A_B) B,(A)] b, oklsﬁ}

Nk

Theorem 4. Let §>0 ond a>0. If f(z}=— + Y q,z* € M satisfies

N | o
=
L

Hz)+ez™

Tre eM*{(a, A, A, B) (3.1)

for any complex number ¢ such that |} < 8, then Ns(fyc M* (e, A, A, B).

Proof. Itis easily seen from (1.2} that g(z)e M* (o, A, A, B} if and only it for any
complex number ¢ with | g| =1

22 (D*g(z)) +1

B2 gy + A - 0% U

which is equivalent to

S‘jz_}zt#ﬂ #0 (zef) | (3.2)
where
= = k—i 1 k-1
b= + Sae=ts ;&Hsmu (3.3)
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From (3.3) we have

ltk - }1-Boo) 5

e, |- < =00+8| o)
| oofB-A)

oofA—B)

AR

If f{z) of the form (1.1) and belonging to the class M schsfles the condition (3.1)
and (3.2) yvields

()" hiz) s 5 (ep)
0

'l oa
Now we let plz) = ot ;bkzk € N;(f), then so that

lole) =2 "hz) 1§ e, o, e,

k=l

smi-ﬂul%i)"ls(x b, ~0,)| < &

Thus for any complex number ¢ such that | o| =1, we have

p(z)zt,h{") 0 (zek)

which implies that p(z) e M* (¢, A, A,B). The proof is complete.

In the following theorem we obtain partial sums for the general class of meromorphic
univalent functions with positive coefficients.

Theorem 5. Let f € M be given by (1.1} and define the partial sums s,(z) ond
s.(z) by

si(z) = 1 and s, (z)=— + EG:;Z'( (ne N\{T}). (3.4)

F4
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Suppose also that

Sdlolsl (3.5)

kul

where

4 k018l e)

k WB;: (/1)

Furthermore,

1) ]
Re{ré)}ﬂ—d—(;eu,nem (3.6)

n

and

Re {%*‘(—iz)—)}> ]f’(} (zeU neN) (3.7)

Eoch of the. bounds in (3.6) and (3.7) is the best possible for ne N.

] ,
Proof. It is easily seen that SEM (0, A, A.B). Thus from Theorem 4 of the

hypothesis (3.5) we have
i
N, (-Z-) C Mo A,A,B) {3.8)

which shows that f € M (@, 4, A,B) as asserted by Theorem 5.
Next for the coefficient d, given by (3.5), itis not difficult to verify that

dn>d>1(=1223..) (3.9)

Therefore, we have
A=l

Elak|+dn;|ck|s2dk]u,: [£1 . (3.10)
=n k=1

k=]
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by using the hypothesis (3.5) again by setting,

L[t (11
QI(Z)—dn{sn(z) [1 dnJ}

d,,icrkz"
= '|+.._...k=-"l—_
&= A1
1+Eakz" @11
k=1
and applying (3.10), we find that
d, S a
Igl(z)"]l < _‘] él : | <1, zel, 312
9@+ 2256, 1-0, 3o, | 12
Jem] k=1
which readily yields the assertion (3.6) of Theorem 5.
If we take
fiz) = 1.z
=74 {3.13)
then
LI
flz) _ ] zn_]d" =1__§_u>}_di SNY
Sn(z) RS chZ*-I n n

which shows that the bound in (3.7) is the best possible for each n & N . Similarly,
we put

_ s.z2)  d,
g.(z) = ﬂ‘l'dn){f(z) 1+d,,}
(1+d,) S a2t
I I (3.14)
1+Zokz"
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and making use of (3.10), we can deduce that

o

: 14d,) Y o,
loxt2)-1] . o n)élc | <1. (3.15)

|ga(2)+1] ™ 2_2§| o |+ (1~d,) ﬁ‘ﬂ o )

k=n

which leads us immediately to the assertion (3.7) of Theorem 5.

The bound in (3.7) is sharp for each n € N, with the extremal function f(z) given by
{3.13). The proof of the Theorem is thus completed.
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