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A STUDY OF STREAMLINES IN
SECOND GRADE FLUID FLOWS

C.S. Bagewadi* & S. Bhagya**

ABSTRACT

We obtain solufions for second grade fluid in {é,w)net where
P{x y)= constant, an arbitrary fomily of curves and 'w{x, y) =constant,
sireom lines. Further exoct solutions are determined when the stream
line patterns are of the form

y-g(x) x=k(y)
f(x) = constant or m(y) -uconsfor?t.
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1. Introduction

Non-Newtonian fluids have gained more and more important industrially, over the
past decades. Polymer solutions and polymer melts are the most common exa mples
of non-Newtonian fluids. The equations of motion of such fluids are highly non-
linear and one order higher than the Navier-Stokes equations. Martin [1] has used
a natural curvilinear co-ordinate system (g, ) in the physical plane (x, y} where
y = constant are the streamlines and ¢=constant is an arbitrary family of curves
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to study plane viscous flows. C.S. Bagewadi and Siddabasappo [6] studied the
plane rotating viscous MHD flows by using differential geometry techniques. O.P
Chandna and Lobrepulu [2] obtained the exact solutions for steady plane viscous
flows by taking the arbitrary fomily of curves ¢ =constant to be x=constant. Rejagopal
13] found some interesting exact solutions of unsteady unidirectional second grade
fluid flows. More recently, Labropulu [4] siudied generalized Beltrami flows and
other closed form solutions of an unsteady viscoelastic fluid.

Inthe present work we first use Martin’s [1] method to decompose the basic equations
of non-Newtonian fluids and next following the work of Labropulu and O.P Chandna
(5], AM. Siddiqui, PN. Kaloni and O.P Chandna {7}, C.S. Bagewadi and S.
Bhagya [9] and Erikson JL [11], we study whether the second grade fluid flow

y—g(x) 5 ' -
along a given family of curves THx) = constant, where f{x) #0 can exist?

The plan of this paper is as follows; in section 2, we employ Martin’s [1] approach
and recast the flow equations. This section also contains the recasting of the equations
in @ new form by employing some results from differential geometry. In section 3, we
outline the method of determining whether a given family of curves can be the
streamlines. In section 4, we deal with the pariicular examples.

2. Equation of Motions

The flow of @ homogeneous incompressible second grade fluid flow, neglecting
thermal effects and body forces, is governed by [10]

divV=0 ‘ ()

divT =pV (2)
where T is Cauchy stress which describes second grade fluids given by B.D. Coleman
and W. Noll [8],

T=—pl+ pA + ah, + a,A? . 3)

The following nomenclatures are used; V the velocity vector field, p the fluid pressure
function, p the constant fluid density, 4 the constant coefficient of viscosity and «,
and a, are the normal stress moduli.

The Rivlin-Ericksen tensors A, and A, are defined as
A, = (grad V) + (grad V)!
A, = A, + (grad VJA, + A,(grad V) (4)



Here (grad V)' denotes the transpose of grad V. If we substitute (3} in {2) and make

use of {4) we get

1
—grod p +pVV 40, [V, +V2(VxV)xV + grad (V-V2V+z| Al

+(ot,+aty) div Al=pV

where V2 denotes the Laplacian,
to time tand

[AF= irAlAlf .

The decomposition of equations (1) and (2) gives

(5)

V, denotes the partial derivative of V with respect

(6)
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We introduce the Vorticity function @ and energy function h as

o v
= ———
& o
and h=p -i~%p(u2 +v2)— a, (UV2U+VV2V)"(£-£&'£]| Al
& &
where V2=¥+-§2-

s O ) f O,
and |A1|—4(GXJ +4(ay]+ £y GJ

(9)

(10)

We write the equations (7) to {10} as system of second order equations in non
dimensional variables by using (9) and {10} in (7) and (8) and taking non

dimensional quantifies for velocity and pressure

1=(u(x,y), vix,y), 0), p(x,y)=—97 as follows:
Y pu
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(1)

(12)

(13)

Here u, v are the velocity components and p the pressure function of x, y and

o,
R"% the Reynolds number, We"’"”;"" is the Weissenberg number, 0=~ i

a,

the ratio of normal stress moduli and v, the characterstic velocity. Thus {6), (9),



{11}, (12) and (13) are five equations in five unknown functions u, v, @, h and p
of x,y.

The continuity equation () implies the existence of a stream function ¥ {x, y) such
that

9
=, v=-2t | (14

We introduce a curvilinear coordinate system in the physical plane in which the
curves ¥ {x, y) = constant are the sireamlines and the curves g{x, y} = constant
are arbitrary.

Let
x=x(gw), y=yldy) (15)

define a curvilinear net in the (x, y) plane with the squared element of arc fength
along any curves given by

42 =E(g,p)dg" + 2F (4,w)dddy + G4 y)dy? (16)
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Equation (15) can be solved to obtain =46 {x,y) , ¥ =w(x, y) such that

where
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provided O<|J|<w, and J is Jacobian given by

OOy X by Fia
v 5 5=t JEG-FZ=2w (19)

Denoting by e the local angle of inclination of the tangent to the coordinate line
W= constant, directed in the sense of increasing g, we have from differential geometry
the following [1): -
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and K is the Goussian curvature.

We transform equations (9) to (13) governing our flow info new forms in the new
variables ¢, w.

Equation of continuity and Vorticity

Martin [1] has obtained the necessary and sufficient condition for the flow of a
fluid, along the co-ordinate lines ¥ = constant of a curvilinear co-ordinate system
(15) with ds? given by (16) to satisfy the principle of conservation of mass to be

Waq=+E, u+r'v*—-%-/'r:_.--e"”l (25)
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where
3] o
a=fé%d¢ +-é%dy/
=3 (r2dg+ riay)

Theﬁ equation {12} becomes

SO0

In this work, we consider thot the fluid towards higher or lower parameter values é
accordingly as J is positive or negative and speed q of the fluid flow is given in

(25).
Linear Momentum Equation

On employing (14) in the linear momentum equations {11), (12) and mdking use
of (18), we have

oh 0w _dw
—=FZ% _gS2
rYaliry i | 27)
oh _nbe dw 2 .
RJ(aw +wJ-G 2 F6W+WeJV @ (28)
Energy Equation

- Employing {14) in the energy equation {13), transforming to {g, ¥) net and
using (18), we have
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Summing u‘p, we have

Theorem 1: If the streamlines w (x, y)=consiant of a steady plane motion of an
incompressible second grade fluid are taken as one set of co-ordinate lines in a
curvilinear co-ordinate system g, w in the physical plane, then the flow is governed
by the system of equations (25) to (29).

These are five equations in six unknown functions £, £ G, @, handp of ¢, w
Here

to_pao) (_pdw, 00
viot| 2] C26 Tow |, 0| a0 ;
Wlag| W e W - (30

Eliminating h from the linear momentum equations by using the integrabiliiy

d'*' a_2h=a_2h h
condiions 75 7=7 5g We hove
WV +R?9.+We—a-(V2m)=0 I bili
£ 2 (Integrability)

= i(ij_i(f_) .

Wl ag\W W (Vorﬂcﬂy)
o (W 8 (W
5;(?1‘.?) a¢[ I‘é) 0 (Gauss) 31

of three equations for £, f, G and ® as function of ¢, w. The continuity equation
(25) determines the speed g = qlg, ¥), the linear momentum equations determines

h=hig,y)= j--d¢ -———d

and the energy equation provides the pressure function p=plg, ¥).
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3. A Study of a Family of Curves in Van Mises
Co-ordinate System

In this section we stidy the properties of sireamlines in Von Mises co-ordinate
system that is in (x, ¥ ) and {y, w) coordinate net.

3.1. For the {x, ) Co-ordinate Net

—g(x)
To analyze whether a given family of curves Z";(%)“— = constant can or cannot be

the streamlines, we assume the offirmative so that there exists some function M(y )
such that ‘

y—;(g;()x—)=M(w), . Mi(y)20 82

where M'(y} is the derivative of unknown function M{wr), TheAsysfer.n of equations
(31) can be now determined for these flows by setting 4 (x, y} = x = constant, so
that the curvilinear co-ordinate net is the Von Mises net x, ¥. Employing equation
(32) in (16) and simplifying the resulting equation, we obtain
ds? = {1+[g {4 +f(x) M{¥)IPdg?+ 2[g () + (M ()] Fix) M (w)dgdy
+2 ) M2 (p)dp?

Equations (17) and {19) beéome

CE=1+lg WP M P
F=lg' & + 7 M (¥) | fix) M (),

G=RMMZ(y) and J=W =fJ M (y) (33)
so that
F:Z
E—]'I-—-G—

when the fluid is assumed to be flowing in the direction of increasing x along the
streamlines. Employing (33) in (31), Gauss equation is identically satisfied. f the
curves (32) constitute o streamline pattern for o steady plane flow of an
incompressible second grade fluid, then the flow must satisfy the Vorticity function
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+1()-H1x0g (x)5" (s +2025 ()2 ()~ Hx)g ()P )

M|2 )
g 20 - “""”'""JM Wiy (w} J o

and M(y) is some function of such that M'{)=0.

Conculsion: A given family of curves Z%(g"(f'l = constant is a permissible family
of streamlines in second grade fluids if and only if the solution obtained forM(w) is
such that M(y) = 0.

3.2. For the (y, ) co-ordinate net

x=k{y) .
To analyze whether a given family of curves ——~ mly) = constant can or cannot be

streamiines, we assume the affirmative so that there exists some function N{y) such
thot

—k
SNy, N(eO. )

where N'(y) is the derivative of the unknown function N{w) and we take the co-
ordinate lines # = constant to be y = constant. Employing equation (36) in (16)
and simplifying the resulting equation, we obtain

ds?= [T+(k'(y)+m'(y )N (y))? Jde? +2[k{y)+mi(y IN(w)m(y) N () dbdy

N () 37)
Equations (17} and {19) become

E={1+(K(y}+m(yIN(w)®},  F=lk'(y)+m'(y)N{y)]mly)N'(y)

G=m(y)N*(y) W=EG-Fl=m(y)N(y)  (38)

when the flvid is assumed to be flowing in the direction of increasing y - along the
streclmllnes Employing (38) in (31), Gauss equation is identically satisfied.

If the curves (36) constitute a streamline pattern for a steady plane flow of an
incompressible second grade fluid, then the flow must satisfy

15
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2y )+ iy ) =mly K ) k"(y)] “"’ 2ty ) =mly ety ()

ity ey OO o (y)[m"(y) ~mly) w]%’-}@]

N|2( )
{40)
and Ny} is some function of y such that N'(g) =0.
, : . x—k(y) P o
Conclusion: A given family of curves “—T)—* = constdnt is a permissible family

of streamlines in second grade fluids if and only if the soluflon obtained for N{y) is
such that N'(w) #0.

4. Applications:

Example 1. (Flow with y—,C,xQ—- Cx+ T", = constant as streamlines). We assume
y=Cx +Cx+ My My =0

where C,, C, ore arbitrary constants and comparing 'fﬁis y with (32), we have
ghdi=Cp2+Cx, =1

The streamline pattern for this flow is shown in Figure 1.
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200
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Figure T. Sirecmline/ﬁcﬁern fory - Cx2~ Cx + 1 = constant.
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Example 2. (Flow withy - C,e*— Cx = constant as streamlines). We assume
y=Ce + Cx+ My My =20

where C,, C, are arbitrary constants and therefore, we have
gl =Ce*+Cx, fx =1

The streamline pattern for this flow is shown in Figure 2.

45E+12 - ‘

4E+12 /

B5E+12 -
3E+12 -
25E+12 4 .
2E+12 4
1.5E+12 -
1E+12 - '
SE+11 ' ) ‘
0 T T 1
20 30 40

T
0 10

Figure 2. Streamline pattern for y ~ C,e*— Cx = constant,

Example 3. (Flow with x{y — C x - C,) = constant as streamlines). We assume
y=Cx+C,+My) /x, My =0

where C,, C, are arbitrary constants and therefore, we have
gix)=Cx+C,, f{x)=1/x

The streamline pattern for this flow is shown in Figure 3. (C,=0}

10 20

W B 0 3 o~
§.

Figure 3. Strecmline pattern for x(y — C,x~ C,) = constant,
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Example 4. {(Flow withy — C = Cx? + C, = constant as streamlines). We assume
y=Cx+Cx2+ 1+ M(y) My =0

where C, C,and C ;are arbitrary constants and therefore, we have
gl =C¥+ C, ¥+ C,, Hx)=1.

The streamline pattern for this flow is shown in Figure 4.

20000 1
15000 -~
10000 -
5000 +

- 5000

-10000

-15000 -

Figure 4. Streamline pattern fory - Cx®— C® + C, = constont.

Remark: Similarly we can discuss applications in {y, @) nét.
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