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On the Minimally Non-outerplanarity of 
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Abstract 

Systo and Topp introduced the notions of generalized 
line, middle and total graphs and they studied the 
planarity and outerplanarity of these classes of graphs. 
Conditions under which generalized middle graphs and 
generalized total graphs are minimally non-outerplanar 
are discussed in this paper. 
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1. Introduction 

Let 𝑉 𝐺 , 𝐸 𝐺 ,  and 𝐿 𝐺 denote the vertex set, edge set and line 
graph of a graph 𝐺, respectively. The union and join (or sum) of 
two graphs 𝐺 and 𝐻 are denoted by 𝐺 ∪ 𝐻 and 𝐺 + 𝐻 
respectively.[1] The middle graph 𝑀(𝐺) of a graph 𝐺 is the graph 
whose vertex set is 𝑉(𝐺) ∪ 𝐸(𝐺) and two vertices of 𝑀(𝐺) are 
adjacent if they are adjacent edges of 𝐺 or one is a vertex and the 
other is an edge of 𝐺 incident with it.[4] The total graph 𝑇(𝐺) of a 
graph 𝐺 is the graph whose vertices can be put in one-to-one 
correspondence with the set of vertices and edges of 𝐺 in such a 
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way that two vertices of 𝑇(𝐺) are adjacent if and only if the 
corresponding elements of 𝐺 are adjacent (if both elements are 
vertices or both are edges) or incident (if one element is a vertex 
and the other is an edge).[1,3] For any non-negative integer 𝑛, a 
cocktail party graph 𝐶𝑃 𝑛 , is defined as the  unique (2𝑛 − 2)-
regular graph of order 2𝑛. For the sake of simplicity, we assume 
that 𝐶𝑃(0) exists and is (0, 0) graph, without vertices. Most of the 
definitions and notations not specifically here are used in the sense 
of Harary.[1] 

Hoffman, Rao et al. and Systo et al. studied planarity 
(outerplanarity) of the generalized line, middle and total graphs.[2, 
5, 6] We shall restrict ourselves to non-trivial connected graphs 
throughout this paper. For a graph 𝐺, let 𝐿(𝐺, 𝑣) be the clique on 
the set of all edges incident with the vertex 𝑣 in 𝐺 and 𝑁∗ denotes 
the set of non-negative integers. For a function 𝑓: 𝑉(𝐺) → 𝑁∗,  let    

 𝐶𝑃 𝑓 𝑣   ∶ 𝑣 ∈ 𝑉 𝐺   be the family of cocktail party graphs 

disjoint from each other and from 𝐺 and 𝐿(𝐺). The notions of the 
generalized line, middle and total graphs are as in [6]. 

1. The generalized line graph 𝐿(𝐺, 𝑓) of 𝐺 is defined as               

  𝐿 𝐺, 𝑣 + 𝐶𝑃(𝑓(𝑣)) 𝑣∈𝑉(𝐺) .  

2. The generalized middle graph 𝑀 𝐺, 𝑓  of 𝐺 is defined as     

  𝐿 𝐺, 𝑣 + [𝐶𝑃 𝑓 𝑣   ∪  < 𝑣 >] 𝑣∈𝑉(𝐺) . 

3. The generalized total graph 𝑇(𝐺, 𝑓) of 𝐺 is defined as   

  𝐿 𝐺, 𝑣 + [𝐶𝑃 𝑓 𝑣    ∪  < 𝑣 >]  ∪ 𝐺𝑣∈𝑉(𝐺) ,  

where< 𝑣 > denotes a one-vertex graph 𝐾1 on the vertex 𝑣1. Notice 
that 𝐿(𝐺, 𝑓) is a subgraph of 𝑀 𝐺, 𝑓  and 𝑀 𝐺, 𝑓  is a subgraph of 
𝑇 𝐺, 𝑓 . Further, 𝐿 𝐺, 𝑓 = 𝐿(𝐺)  [or 𝑀 𝐺, 𝑓 = 𝑀(𝐺) or 𝑇 𝐺, 𝑓 =
𝑇 𝐺 ] if and only if 𝑓 𝑣 = 0 for every vertex  𝑣 of  𝐺. 

A set of vertices of a planar graph 𝐺 is called an inner vertex set 
𝐼 𝐺  of 𝐺, if 𝐺 can be drawn on the plane in such a way that each 
vertex in 𝐼(𝐺) is incident only with the interior faces of 𝐺 and 𝐼(𝐺) 
contains the minimum possible number of vertices of 𝐺. Each 
vertex in 𝐼 𝐺  is said to be an inner vertex of 𝐺. The number  𝐼(𝐺)  
in such an embedding of 𝐺 is denoted by 𝑖 𝐺  𝑎𝑛𝑑 is called the 
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inner vertex number of 𝐺. Clearly, 𝐺 is outerplanar if and only if 
𝑖 𝐺 = 0 and 𝐺 is minimally non-outerplanar if  𝑖 𝐺 = 1.[4] 

In this paper, we study the minimally non-outerplanarity of 
generalized middle and total graphs. Our results on generalized 
middle graphs extend to those for middle graphs given in [4]. 

2. Generalized Middle Graphs 

We begin with the theorem from [6] as a remark. 

Remark 2.1 

For a nontrivial connected graph 𝐺 and a function 𝑓: 𝑉(𝐺) → 𝑁∗, the 
generalized middle graph 𝑀(𝐺, 𝑓) is planar (outerplanar) if and 
only if 𝐺 is planar (outerplanar) with 𝑑𝐺 𝑣 + 𝑓 𝑣 ≤ 3   (𝑑𝐺 𝑣 +
𝑓 𝑣 ≤ 2 ) for every vertex 𝑣 of 𝐺. 

The following theorem gives a criterion for the generalized middle 
graph of a graph to be minimally non-outerplanar. 

Theorem 2.2 

For a nontrivial connected graph 𝐺 and a function 𝑓: 𝑉(𝐺) → 𝑁∗, the 
generalized middle graph 𝑀(𝐺, 𝑓) is minimally non-outerplanar if 
and only if the following conditions hold true. 

a) 𝐺 is planar, 

b) 𝑑𝐺 𝑣 + 𝑓 𝑣 ≤ 3 , for each vertex 𝑣 of 𝐺  and  

c) 𝑑𝐺 𝑣 + 𝑓 𝑣 = 3, 𝑣  is the unique cutvertex in 𝐺 and 
furthermore, 𝑑𝐺 𝑢 + 𝑓 𝑢 ≤ 2 for all other vertices 𝑢 ≠ 𝑣 in 
𝐺. 

Proof 

Suppose that 𝑀 𝐺, 𝑓  is minimally non-outerplanar and hence, it is 
planar. By Remark 2.1, 𝐺 is planar and 𝑑𝐺 𝑣 + 𝑓 𝑣 ≤ 3 , for each 
vertex 𝑣 of 𝐺. Also,  𝑀 𝐺, 𝑓   is not outerplanar. In view of Remark 
2.1, 𝑑𝐺 𝑣 + 𝑓 𝑣 ≥ 3. Consequently, 𝐺 must contain a vertex 𝑣 
such that 𝑑𝐺 𝑣 + 𝑓 𝑣 = 3. 
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Now, we prove the uniqueness of the vertex 𝑣. For this, assume 
that 𝐺 has at least two vertices 𝑣1 and 𝑣2 such that  𝑑𝐺 𝑣𝑖 + 𝑓 𝑣𝑖 =
3 for  𝑖 = 1, 2. There are three cases to discuss: 

Case 1 

If 𝑑𝐺 𝑣𝑖 = 3 for 𝑖 = 1, 2, then each vertex 𝑣𝑖  and three of its 
neighbouring vertices lie in a subgraph of 𝐺 isomorphic to 𝐾1,3, 
whose middle graph 𝑀(𝐾1,3) contains the wheel 𝑊4 as its subgraph. 
Consequently, 𝑀(𝐺) has at least two edge –disjoint subgraphs, each 
is isomorphic to 𝑊4. Since 𝑖 𝑊4 = 1, 𝑖(𝑀(𝐾1,3)) ≥ 1, immediately, 
𝑀(𝐺, 𝑓) contains a subgraph isomorphic to 2𝑊4, and hence 
𝑖(𝑀(𝐺, 𝑓)) ≥ 2,  a contradiction. 

Case 2 

Assume 𝑑𝐺 𝑣1 = 3 and 𝑑𝐺 𝑣2 = 2.  Since  𝑑𝐺 𝑣1 = 3, arguing as 
above, we see that  𝑀(𝐺, 𝑓) has a non-outerplanar subgraph 
isomorphic to 𝑊4,  and hence  𝑖(𝑀(𝐺, 𝑓)) ≥ 1.  Since 𝑑𝐺 𝑣2 = 2, it 
follows that 𝑓 𝑣2 = 1 because 𝑑𝐺 𝑣2 + 𝑓 𝑣2 = 3  in 𝐺. It is easy to 
see that  𝑀(𝐺, 𝑓) has another non-outerplanar subgraph isomorphic 
to 𝐿 𝐺, 𝑣2 +  𝐶𝑃 1  ∪  < 𝑣2 >  and in particular, this subgraph 
contains a proper subgraph isomorphic to 𝐾2 ,3 (see Figure 1). But 

𝑖 𝐾2 ,3 = 1. Now,  𝑀(𝐺, 𝑓)  contains a subgraph isomorphic to 

𝐾2 ,3  ∪  𝑤4 and it has at least two inner vertices, contradicting the 
minimally non-outerplanarity of 𝑀(𝐺, 𝑓). 

Case 3 

Let  𝑑𝐺 𝑣𝑖 = 2 for 𝑖 = 1 and 2. Arguing as above, we can show that 
𝑀(𝐺, 𝑓) contains two distinct non-outerplanar subgraphs, each of 
which is isomorphic to 𝐾2 ,3. This implies that 𝑖(𝑀(𝐺, 𝑓)) ≥ 2, a 
contradiction. 

In all cases, we arrived at a contradiction. It follows that 𝐺 contains 
a unique vertex 𝑣 such that 𝑑𝐺 𝑣 + 𝑓 𝑣 = 3 and all other vertices 
𝑢 ≠ 𝑣  satisfy𝑑𝐺 𝑢 + 𝑓 𝑢 ≤ 2. 

Finally, we show that the vertex 𝑣 mentioned above, is a cutvertex 
of 𝐺. If 𝑑𝐺 𝑣 = 3 and 𝑣 is a unique vertex of degree 3 (because 
𝑓 𝑣 = 0 in this case), it follows that 𝑣 is a cutvertex.  Next,  assume 
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that 𝑑𝐺 𝑣 = 2 and 𝑣 is a non-cutvertex. Then 𝑓 𝑣 = 1 and 𝑣 lies on 
a cycle say 𝐶𝑛  : 𝑣, 𝑣1 , 𝑣2 , … . 𝑣𝑛−1 , 𝑣  for 𝑛 ≥ 3. As before,  𝑀(𝐶𝑛 , 𝑓) 
contains a non-outerplanar subgraph isomorphic to 𝐿 𝐶𝑛 ,   𝑣 +
 𝐶𝑃 1  ∪  < 𝑣 >  ∪  𝐶𝑛  and it has a proper subgraph 

homeomorphic to 𝐾2,4 with 𝑖 𝐾2,4 = 2 (Figure 2). It follows that 

𝑖 𝑀 𝐶𝑛  , 𝑓  ≥ 2.  Since 𝑀 𝐶𝑛  , 𝑓  is a non-outerplanar subgraph of 

𝑀 𝐺, 𝑓 , 𝑀 𝐺, 𝑓  has at least two inner vertices, a contradiction. 
Thus, 𝑣 is a cutvertex. 

Conversely, assume that  𝐺 and 𝑓 satisfy given conditions (a), (b) 
and (c). Then it is not hard to check that 𝑀 𝐺, 𝑓  is minimally non-
outerplanar.  ∎ 

 
𝑑𝐺 𝑣2 = 2; 𝑒𝑖(𝑖 = 1,2) an edge at 𝑣2 

 
𝐿 𝐺, 𝑣2 +  𝐶𝑃 1  ∪  < 𝑣2 >  

 Fig. 1 
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3. Generalized total graphs 

It is shown in [3] that total graphs are not minimally non-
outerplanar. In this section, we obtain a criterion for the 
generalized total graph 𝑇(𝐺, 𝑓) of a graph 𝐺 to be minimally non-
outerplanar when 𝑓 is non-zero. Now, we consider the theorem 
from [6] as the remark. 

Remark 3.1 

For a non-trivial connected graph 𝐺 and a function 𝑓: 𝑉(𝐺) → 𝑁∗, 
the generalized total graph 𝑇 𝐺, 𝑓  is planar (outerplanar) if and 
only if the following conditions hold: 

a) 𝑑𝐺 𝑣 + 𝑓 𝑣 ≤  3 (𝑑𝐺 𝑣 + 𝑓 𝑣 ≤ 2 ) for each vertex 𝑣 of 𝐺 
and  

b) 𝑑𝐺 𝑣 = 3 (𝑑𝐺 𝑣 = 2 ), 𝑣 is a cutvertex of 𝐺. 

Theorem 3.2 

For a non-trivial connected graph 𝐺 and a non-zero function 
𝑓: 𝑉(𝐺) → 𝑁∗, the generalized total graph 𝑇 𝐺, 𝑓  is minimally non-
outerplanar if and only if the following conditions hold: 

a) 𝐺 is a path of order 𝑛 ≥ 3, 

b) 𝑑𝐺 𝑣 + 𝑓 𝑣 ≤  3 for every vertex 𝑣 of 𝐺 and  

c) 𝑑𝐺 𝑣 + 𝑓 𝑣 = 3, 𝑣 is the unique vertex of degree 2 in 𝐺 
and furthermore, 𝑑𝐺 𝑢 + 𝑓 𝑢 ≤  2 for all other vertices 
𝑢 ≠ 𝑣 in 𝐺. 

Proof 

Suppose 𝑇 𝐺, 𝑓  is minimally non-outerplanar and hence, it is 
planar. From Remark 3.1, 𝑑𝐺 𝑣 + 𝑓 𝑣 ≤  3 for each vertex 𝑣 of 𝐺 
and if 𝑑𝐺 𝑣 = 3, then 𝑣 is a cutvertex of 𝐺. Since 𝑇(𝐺, 𝑓) is not 
outerplanar, by application of Remark 3.1, 𝐺 has a vertex 𝑣  such 
that 𝑑𝐺 𝑣 + 𝑓 𝑣 =  3. Assume that the vertex 𝑣 has degree 3, then 
𝑓 𝑣 = 0. Moreover, 𝑣 and three of its neighbouring vertices lie in a 
subgraph of 𝐺 isomorphic to 𝐾1,3, whose total graph  𝑇(𝐾1,3) 
contains at least two inner vertices as 𝑖(𝑇(𝐾1,3)) ≥ 2).[3] Since 
𝑇(𝐾1,3) is a subgraph of 𝑇(𝐺, 𝑓), we have 𝑖(𝑇(𝐺, 𝑓)) ≥ 2, 
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contradicting the minimally non-outerplanarity of 𝑇(𝐺, 𝑓). This 
implies that every vertex of 𝐺 has degree at most two. Since 𝐺 is 
nontrivial and connected, either 𝐺 is a path of order at least two, or 
a cycle. If ∆ 𝐺 = 1, then 𝐺 = 𝐾2 and 𝑓 𝑣 = 2 for each vertex 𝑣 of 
𝐺. It is easy to see that 𝑇(𝐺, 𝑓) has a non-outerplanar subgraph 
isomorphic to 𝐾1 + (2𝐾1 ∪  𝐶4) and it has two inner vertices, a 
contradiction. 

 

Fig. 2. 𝑀 𝐶𝑛 , 𝑓  with 𝑓 𝑣 = 1. 

If ∆ 𝐺 = 2, then  𝐺 = 𝑃𝑛  or  𝐺 = 𝐶𝑛  for 𝑛 ≥ 3. Suppose 𝐺 is 𝐶𝑛  : 
𝑣, 𝑣1 , 𝑣2 , … . 𝑣𝑛−1 , 𝑣  for 𝑛 ≥ 3. Then we have𝑓 𝑣 = 1. As usual, 
𝑇 𝐺, 𝑓  contains a non-outerplanar subgraph homeomorphic to 𝐾2,4  
(Figure 2). Consequently, 𝑇 𝐺, 𝑓  has at least two inner vertices. 
This is a contradiction. So, 𝐺 = 𝑃𝑛for 𝑛 ≥ 3 is the possible case. 
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Finally, we shall prove the uniqueness of the vertex. For this, 
assume that 𝐺 has at least two vertices 𝑣1and 𝑣2, each has degree 2 
in 𝐺. We have 𝑓 𝑣1 = 𝑓 𝑣2 = 1.  By arguing in the similar manner 
as in Case 3 of Theorem 2.2, we arrived at the conclusion that 
𝑖(𝑇(𝐺, 𝑓)) ≥ 2.  This is a contradiction. Thus,  𝐺 has a unique vertex 
of degree 2 such that 𝑑𝐺 𝑣 + 𝑓 𝑣 = 3. In addition, if  𝑑𝐺 𝑢 +
𝑓 𝑢 ≥  3  for some vertex 𝑢 ≠ 𝑣 in 𝐺, then it is easy to see that  

𝑖 𝑇 𝐺, 𝑓  > 1, again a contradiction. 

Conversely, suppose that conditions (a), (b) and (c) hold for 𝐺. It is 
easy to verify that 𝑇 𝐺, 𝑓  is minimally non-outerplanar.  ∎ 
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