A Study on Wiener Polynomial for Steiner \mathbf{n} - distance of some graphs

Mary U*, Arockiaraj PS ${ }^{\dagger}$ and James Albert A \ddagger

Abstract

In this paper, the Wiener polynomial $\boldsymbol{W}_{\boldsymbol{n}}(\boldsymbol{G} ; \boldsymbol{x})$ for some graphs such as complete, bipartite and star graphs are studied. The Wiener polynomial for Steiner n-distance of Corona and Complement graphs are derived. An attempt is made to obtain the Wiener polynomial for Steiner n-distance of Prism graphs.

Keywords: Prism graph, corona graph, complement graph, Steiner distance, wiener polynomial

1. Introduction

A graph $G(\mathrm{~V}, \mathrm{E})$ consists of a finite nonempty set $\mathrm{V}=\mathrm{V}(G)$ of p vertices (or points) together with a set $\mathrm{E}=\mathrm{E}(G)$ of q unordered pairs of vertices of V which are known as edges (or lines). In this paper, we use non - trivial, finite, undirected connected graph without loops and multiple edges.

The distance $d_{\mathrm{G}}(\mathrm{u}, \mathrm{v})$ between the vertices u and v is the length of the shortest path in G connecting u and v. The eccentricity e(u) $=$ $\max \{\mathrm{d}(\mathrm{u}, \mathrm{v}): \mathrm{v} \in \mathrm{V}(G)\}$. The radius $\mathrm{r}(G)$ and the diameter $\mathrm{d}(G)$ of the

[^0]graph G are defined by $\mathrm{r}(G)=\min \{\mathrm{e}(\mathrm{u}): \mathrm{u} \in \mathrm{V}(G)\}$ and $\mathrm{d}(G)=$ $\max \{\mathrm{e}(\mathrm{u}): \mathrm{u} \in \mathrm{V}(G)\}$, respectively.
For general notation and terminology, we follow Harary.[6]
The Steiner distance for a non empty set $\mathrm{S} \subseteq \mathrm{V}(\mathrm{G})$, denoted by $\mathrm{d}_{\mathrm{G}}(\mathrm{S})$, is the size of the smallest connected subgraph $\mathrm{H}(\mathrm{S})$ containing S.[3] If the minimal subgraph $\mathrm{H}(\mathrm{S})$ is a tree of G, it is called the Steiner tree of S. Thus, Steiner distance of the set S of n distinct vertices is the minimum number of edges in a connected sub graph that contains S . If $|\mathrm{S}|=2$ then the Steiner distance is the distance between the two vertices.

If $2 \leq n \leq p$ and $|\mathrm{S}|=\mathrm{n}$, then Steiner distance of S is called Steiner n distance of S and is denoted by $\mathrm{d}_{\mathrm{G}}(\mathrm{S})$. The Steiner n -diameter of a graph G denoted by $\operatorname{diam}_{\mathrm{n}}(G)$ or $\delta_{\mathrm{n}}(G)$ is defined as the maximum Steiner distance of S of n vertices of $\mathrm{V}(G)$.The total Steiner n distance $\mathrm{d}_{\mathrm{n}}(G)$ is defined by $\mathrm{d}_{\mathrm{n}}(G)=\Sigma\left\{\mathrm{d}_{\mathrm{G}}(\mathrm{S})|\mathrm{S} \subseteq \mathrm{V}(G),|\mathrm{S}|=\mathrm{n}\}\right.$.
The average Steiner n -distance $\mu_{\mathrm{n}}(G)$ of a connected graph G is the average distance over all subsets S of n vertices in $G, \mu_{\mathrm{n}}(G)=\frac{d_{n}(\mathrm{G})}{\binom{p}{n}}$, $\binom{p}{n}$ is the number of subsets having n elements.
The problem of finding $\mu_{\mathrm{n}}(G)$ is NP complete if $2<n<p$.[8] The sharp bounds for $\mu_{\mathrm{n}}(G)$ are already obtained.[4]

2. Preliminaries

The concept of the Wiener polynomial $W(G ; x)$ of a graph G was put forward by Hosoya. [7]

Definition 2.1

The Wiener polynomial of a graph G is defined as $W(G ; x)=\sum_{k=0}^{\delta(G)} \mathrm{C}(\mathrm{G}, \mathrm{k}) x^{k}$ where $C(G ; k)$ is the number of pairs of vertices in G that are distance k apart and $\delta(G)$ is the diameter of the graph G.[9]
Gutman [5] established some basic properties of $W(G ; x)$. Saeed [9] obtained the Wiener polynomial for several classes of graphs and studied some properties of the sequence $\{C(G ; k)\}$ which generates the polynomial $W(G ; x)$.

Ali and Said defined the Wiener polynomial of Steiner n-distance of connected graph G and derived the same for some special graphs.[1]

Definition 2.2

The Wiener polynomial of Steiner n-distance of a connected graph G is defined as $W_{n}(G ; x)=\sum_{k=n-1}^{\delta n(G)} \mathrm{C}_{\mathrm{n}}(\mathrm{G}, \mathrm{k}) x^{k}$ where $2 \leq n \leq p$, $\mathrm{C}_{\mathrm{n}}(\mathrm{G}, \mathrm{k})$ is the number of subsets S of n distinct vertices with Steiner distance k in the graph G, and $\delta_{n}(G)$ is the Steiner n-diameter of G.[1] For $\mathrm{n}=2, W_{2}(G ; x)=W(G ; x)-p$.

Results 2.3

For a complete graph of order $\mathrm{p}, W_{n}\left(K_{p} ; x\right)=\binom{p}{n} x^{n-1}$.[1]

Results 2.4

If $K_{r, s}$ is the complete bipartite graph of order $r+s$, then $W_{n}\left(K_{r, s} ; x\right)=$ $\left[\binom{r}{n}+\binom{S}{n}\right] \mathrm{x}^{\mathrm{n}}+\left[\sum_{i=1}^{n-1}\binom{r}{i}\binom{s}{n-i}\right] \mathrm{x}^{\mathrm{n}-1}=\left[\binom{r}{n}+\binom{S}{n}\right] \mathrm{x}^{\mathrm{n}}+\left[\binom{r+s}{n}-\binom{r}{n}-\right.$ $s n \mathrm{x}^{\mathrm{n}-1}$; if a and b are positive integers and $\mathrm{a}<\mathrm{b}$, then $a b=0$.[1]

Results 2.5
For S_{p}, a star graph of order $\mathrm{p}, W_{n}\left(S_{p} ; x\right)=\binom{p-1}{n} \mathrm{x}^{\mathrm{n}}+\binom{p-1}{n-1} \mathrm{x}^{\mathrm{n}-1} .[\mathbf{1}]$

3. Wiener polynomial of Steiner \mathbf{n}-distance of corona graph

Definition 3.1

Let G_{1} and G_{2} be two simple, connected graphs. The corona $G_{10} G_{2}$ of two graphs G_{1} and G_{2} was defined by Frucht and Harary as the graph obtained by taking one copy of G_{1} (which has p_{1} points) and p_{1} copies of G_{2}, and then joining the $i^{\text {th }}$ copy of G_{2} with G_{1}. [6] G_{10-} G_{2} has $p_{1}\left(1+p_{2}\right)$ vertices and $q_{1}+p_{1} q_{2}+p_{1} p_{2}$ edges.

Example 3.2 Let $G_{1}=K_{2}$ and $G_{2}=K_{1,2}$

$$
G_{1} G_{2}
$$

$G_{10} G_{2} \quad G_{20} G_{1}$

$\mathrm{v}\left(G_{1}\right)=2 ; \quad \mathrm{v}\left(G_{2}\right)=3 ; \quad \mathrm{e}\left(G_{1}\right)=1 ; \quad \mathrm{e}\left(G_{2}\right)=2 ; \quad \mathrm{v}\left(G_{10} G_{2}\right)=2+3 \times 2=8 ; \quad \mathrm{v}\left(G_{20-}\right.$ $\left.G_{1}\right)=3+3 \times 2=9$.
$\mathrm{e}\left(G_{10} G_{2}\right)=1+2 \times 3+2 \times 3=13 ; \mathrm{e}\left(G_{20} G_{1}\right)=2+3 \times 1+3 \times 2=11$.

Theorem 3.3

For $3 \leq \mathrm{n} \leq \mathrm{p}_{1}+\mathrm{p}_{1} \mathrm{p}_{2}, \quad W_{n}\left(G_{10} G_{2} ; x\right)=W_{n}\left(G_{1} ; x\right)+$ $p_{1} . W_{n}\left(G_{2} ; x\right)+\sum_{r=1}^{n-1} \prod_{i=1}^{p_{1}} W_{r_{i}}\left(G_{2} ; x\right) . W_{n-\sum r_{i}}\left(G_{1} ; x\right)$

Proof

Let S be a subset of $V\left(G_{10} G_{2}\right)$ containing n vertices such that $d_{G_{1} 0 G_{2}}(S)=\mathrm{k}$. We consider the following cases:
(i) $\mathrm{S} \subseteq \mathrm{V}\left(G_{1}\right)$. The number of such n - subsets S is $C_{n}\left(G_{1} ; k\right)$ and this produces the polynomial $W_{n}\left(G_{1} ; x\right)$.
(ii) $\mathrm{S} \subseteq \mathrm{V}\left(G_{2}\right)$. The number of such n - subsets S is $C_{n}\left(G_{2} ; k\right)$ and this produces the polynomial $W_{n}\left(G_{2} ; x\right)$.
In $G_{10} G_{2}$, we have p_{1} copies of $\mathrm{v}\left(G_{2}\right)$ and this produces the polynomial $p_{1} W_{n}\left(G_{2} ; x\right)$.
(iii) $\mathrm{S} \subseteq\left\{\mathrm{V}\left(G_{1}\right) \cup p_{1} . V\left(G_{2}\right)\right\}$, where $p_{1} \cdot V\left(G_{2}\right)$ stands for p_{1} copies of $\mathrm{V}\left(G_{2}\right)$ so that $|\mathrm{S}|=\left|S_{0}\right|+\sum_{i=1}^{p_{i}}\left|S_{i}\right|=\mathrm{n}$,where S_{0} contains vertices of G_{1} and S_{i} contains vertices of G_{2} for $\mathrm{i}=1,2, \ldots p_{1}$ (p_{1} copies).

If k is the Steiner distance of S , then $\mathrm{k}=k_{0}+\sum_{i=1}^{p_{i}} k_{i}$ where k_{i} are Steiner distance of each copy of $S_{i}, i=1,2, \ldots p_{1}$. It is clear that $1 \leq$ $d_{G_{1}}\left(S_{0}\right) \leq k_{0}$ and $1 \leq d_{G_{2}}\left(S_{i}\right) \leq k_{i}$ for $\mathrm{i}=1,2, \ldots . p_{1}$. The number of such S_{0} is $C_{n-\left(\sum_{1}^{p_{1}} r_{i}\right)}\left(G_{1} ; k_{0}\right)$ and the number of such S_{i} is $C_{r_{i}}\left(G_{2} ; k_{i}\right)$ for $\mathrm{i}=1,2, \ldots . p_{1}, r_{i}=1,2, \ldots . \mathrm{n}-1$.

The coefficient of x^{k} is $\sum_{i=r}^{k-1} C_{n-\left(\sum_{1}^{p_{1}} r_{i}\right)}\left(G_{1} ; k_{0}\right) \cdot \prod_{i=1}^{p_{1}} C_{r_{i}}\left(G_{2} ; k_{i}\right)$. Summing over $\mathrm{k}, \mathrm{n}-1 \leq \mathrm{k} \leq \delta_{n}\left(G_{10} G_{2}\right)$ and then over $\mathrm{r}, 1 \leq \mathrm{r} \leq \mathrm{n}-1$, we get $\sum_{r=1}^{n-1} \prod_{i=1}^{p_{1}} W_{r_{i}}\left(G_{2} ; x\right) . W_{n-\sum r_{i}}\left(G_{1} ; x\right)$

Hence adding the polynomials obtained in the above three cases, we get the Wiener polynomial of corona graph $G_{10} G_{2}$. Similarly the Wiener polynomial of the corona graph $G_{20} G_{1}$ is $W_{n}\left(G_{20} G_{1} ; x\right)=$ $W_{n}\left(G_{2} ; x\right)+p_{2} . W_{n}\left(G_{1} ; x\right)+\sum_{r=1}^{n-1} \prod_{i=1}^{p_{2}} W_{r_{i}}\left(G_{1} ; x\right) . W_{n-\sum r_{i}}\left(G_{2} ; x\right)$.

4. Wiener polynomial of Steiner n-distance of the complement graph

Definition 4.1

The complement graph \bar{G} of a graph G is defined to be the graph which has $\mathrm{V}(G)$ as its vertex set and two points are adjacent in \bar{G} if and only if they are not adjacent in G.[6]

Definition 4.2

The graph G is said to be a self-complementary graph if G is isomorphic to \bar{G}. [6]

Definition 4.3

Two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are said to be isomorphic if there exists a bijection $\mathrm{f}: V_{1} \rightarrow V_{2}$ such that u, v are adjacent in G_{1} if
and only if $f(u), f(v)$ are adjacent in G_{2}. This relation is denoted by $G_{1} \cong G_{2}$. The map f is called an isomorphism of G_{1} to G_{2}.[6]

Remark 4.4

The procedure for obtaining Wiener polynomial of Steiner distance of the complement graph \bar{G} is same as that of G, if \bar{G} is a connected graph.

Remark 4.5

If the complement graph \bar{G} is disconnected, Wiener polynomial of Steiner distance of the complement graph \bar{G} does not exist. Hence the relation between the Wiener polynomial of G and \bar{G} cannot be found.

Example 4.6

If the graph G is given by fig (1), its complement graph \bar{G} is given by fig (2)

Fig. 1

Fig. 2
$\mathrm{W}_{\mathrm{n}}(\mathrm{G} ; \mathrm{x})=5 \mathrm{x}+5 \mathrm{x}^{2}$ and $\mathrm{W}_{\mathrm{n}}(\bar{G} ; \mathrm{x})$ does not exist.

Remark 4.7

If G is a complete graph K_{n}, Wiener polynomial of Steiner distance of the complement graph \bar{G} does not exist as the complement of a complete graph is totally disconnected for which Wiener polynomial of Steiner distance cannot be defined.

Remark 4.8

In a connected graph G , if a vertex v is adjacent to every other vertex of G, then the Wiener polynomial of Steiner distance of the complement graph \bar{G} does not exist.

5. Wiener polynomial of Steiner n-distance of Prism graph

Definition 5.1

A prism graph Y_{N} is a graph corresponding to the skeleton of an n prism. It is also called a circular ladder graph and denoted by $C L_{N}$. Prism graphs are both planar and polyhedral. An N-prism graph has 2 N nodes and 3 N edges.[10]

The prism graph Y_{3} is the line graph of the complete bipartite graph $K_{2,3}$.

Definition 5.2

If G is a graph, \bar{G} is its complement and π is a bijection $\pi: V(G) \rightarrow$ $V(\bar{G})$, the complementary prism $G \bar{G}$ is the graph obtained by taking disjointed copies of G and \bar{G} and adding the edge $\{v, \pi(v)\}$ for each $v \in V(G)$. The complementary prism of a graph G is obtained from a copy of G and its complement \bar{G} by adding a perfect matching between the corresponding vertices of G and \bar{G}.[10]

Theorem 5.3

The Wiener polynomial of Steiner n-distance of Prism graph Y_{3} is $W_{n}\left(Y_{3} ; x\right)=\sum_{k=1}^{\delta_{n}} C_{n}\left(Y_{3} ; x\right) x^{k}$ for $2 \leq n \leq N$.

Proof

Let us find the Wiener polynomial of Steiner n-distance of Prism graph Y_{3}. The vertices of inner graph are u_{1}, u_{2}, u_{3} and the vertices of the outer graph are $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$. Let us consider subsets $S \subseteq V\left(Y_{3}\right)$ with n vertices, $\mathrm{n}=2,3, \ldots 2 \mathrm{~N}$. For $2 \leq n \leq N$, the following three cases may be considered.
(i) vertices of the inner graph,
(ii) vertices of the outer graph and
(iii) vertices of both inner and outer graphs.

Hence the Wiener polynomial of Steiner n-distance may be computed separately for the three cases and the sum will be the required polynomial.

$$
W_{2}\left(Y_{3} ; x\right)=3 x+3 x+\left\{3 x+6 x^{2}\right\}=9 x+6 x^{2} ;
$$

$$
\begin{aligned}
& W_{3}\left(Y_{3} ; x\right)=x^{2}+x^{2}+\left\{12 x^{2}+6 x^{3}\right\}=14 x^{2}+6 x^{3} ; \\
& W_{4}\left(Y_{3} ; x\right)=15 x^{3} ; \\
& W_{5}\left(Y_{3} ; x\right)=6 x^{4} ; \\
& W_{6}\left(Y_{3} ; x\right)=x^{5} .
\end{aligned}
$$

In general $W_{n}\left(Y_{3} ; x\right)=\sum_{k=1}^{\delta_{n}} C_{n}\left(Y_{3} ; x\right) x^{k}$ for $2 \leq n \leq N$.

References

[1] A. A. Ali and W. A. M. Said, J. Appl. Sci., vol.8, no.2, 2006, pp. 6471.
[2] G. Chartrand and L. Lesniak, Graphs and Digraphs, $2^{\text {nd }}$ Ed; CA: Wadsworth and Brooks, 1986.
[3] P. Dankelmann, O. R. Oellermann and H. C. Swart, "The Average Steiner Distance of a Graph," J. Graph Theory, vol. 22 no.1, 1996, pp. 15-22.
[4] P. Dankelmann, O. R. Oellermann and H. C. Swart, "On the Average Steiner Distance of Certain Classes of Graphs," Discrete Applied Math. vol. 79, 1996, pp. 91-103.
[5] I. Gutman, "Some Properties of the Wiener Polynomial," Graph Theory Notes of New York, vol. 25, vol. 1993, pp. 13-18.
[6] F. Harary, Graph Theory. New Delhi, India: Narosa, 2001.
[7] H. Hosoya, "On Some Counting Polynomials", Discrete Applied Math., vol. 19, 1988, pp.239-257.
[8] M. R. Garey and D. S. Johnson, "Computers and Interactibility: A Guide to the Theory of NP-Completeness," New York: Freeman and Company, 1979.
[9] W. A. M. Saeed, "Wiener Polynomials of a Graph," Ph.D.Thesis, Mosul University, 1999.
[10] T. W. Haynes, M. A. Henning and L. C. V. Merwe, "Domination and total domination in complementary Prisms," J. Comb. Optimization, vol. 18, no.1, 2009, pp 23-37.

[^0]: * Research Scholar, Karpagam University, Coimbatore and Faculty in the Department of Mathematics, Nirmala College for Women, Coimbatore 641 018, Tamil Nadu, India; marycbe@ymail.com
 \dagger Department of Mathematics, MEPCO Schlenk Engineering College, Sivakasi, Tamil Nadu, India
 \ddagger Faculty of Arts, Science \& Humanities, Karpagam University, Coimbatore 641021, Tamil Nadu, India

