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Solutions of Graph Equations Involving 

Line, Middle and Mycielski Graphs 

H. P. Patil* and   R. P. Raj†  

Abstract  

Let 𝐺 be a graph with the vertex set 𝑉 =  𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑛 . 
The Mycielski graph of 𝐺 denoted by 𝜇(𝐺) is the graph 
obtained from 𝐺 by adding 𝑛 + 1 new vertices               
𝑉′ =  𝑣𝑖 ′ ∶ 1 ≤ 𝑖 ≤ 𝑛  and 𝑢, then for 1 ≤ 𝑖 ≤ 𝑛, joining 𝑣𝑖 ′ 
to the neighbours of 𝑣𝑖  and to 𝑢.  In this paper, we 
determine all pairs of graphs: (𝐺, 𝐻) for which one of the 

graphs: 𝐿 𝐺 ,   𝐿(𝐺)        , 𝑀(𝐺) and 𝑀(𝐺)        is isomorphic to the 
Mycielski graph𝜇(𝐻). 

Keywords: Line graph, middle graph, Mycielski graph, graph 
valued function. 

1. Introduction  

All graphs considered here are finite, undirected, without loops 
and without multiple edges. We follow the terminology of 
Harary[3]. For any graph 𝐺, let 𝐺  and 𝐿(𝐺) denote the complement 
and the line graph of 𝐺, respectively. The end-edge graph 𝐺+ is the 
graph obtained from 𝐺 by adjoining an end-edge 𝑢𝑖𝑢𝑖 ′ at each 
vertex 𝑢𝑖  of 𝐺. Hamada et al. showed that the middle graph 𝑀(𝐺) is 
isomorphic to the line graph 𝐿(𝐺+).[2] Let𝑉 𝐺 =  𝑣𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 . 
The Mycielski  graph 𝜇 𝐺  introduced in [1] is the  graph obtained 
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from 𝐺 by inserting (𝑛 + 1) new vertices  𝑣𝑖 ′ ∶ 1 ≤ 𝑖 ≤ 𝑛  and 𝑢 to 𝐺 
by joining each 𝑣𝑖 ′ to the neighbours of 𝑣𝑖   and to 𝑢. 

 
 
 
 
 
 
 
 
 
 
 

 

 

Fig 1 

In this paper, we shall obtain all pairs of graphs(𝐺, 𝐻), which 
satisfy the following four graph equations: 

1. 𝐿 𝐺 = 𝜇 𝐻  

2. 𝑀 𝐺 = 𝜇(𝐻) 

3. 𝐿 𝐺       = 𝜇(𝐻) and 

4. 𝑀(𝐺)       = 𝜇(𝐻). 

Here, the equality sign, = means the isomorphism between the 
corresponding graphs. A pair of graphs (𝐺, 𝐻), which satisfies a 
graph–equation is called its solution. Throughout our discussion, a 
pair (𝐺, 𝐻) is always considered as a solution of a graph–equation 
mentioned above. 

In order to determine the solutions of the above equations, we need 
the result of Beineke (Theorem 8.4; p. 74).[3]  A graph 𝐺 is a line 
graph if and only if 𝐺 has none of nine specified graphs: 𝐺𝑖  for 
1 ≤ 𝑖 ≤ 9,  as an induced subgraph. Among these, we depict here 
three forbidden subgraphs, call 𝐹𝑖  1 ≤ 𝑖 ≤ 3 and their complements 
𝐹 𝑖 
    (Figure 1). 
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Further, it is noticed that for any two graphs 𝐺 and 𝐻, if 𝜇(𝐻) has 

𝐹 𝑖 
    , 1 ≤ 𝑖 ≤ 3 as an induced subgraph, then 𝐿(𝐺)       (or 𝑀(𝐺)        = 𝜇(𝐻)) 
has no solution. 

2. The solution of  𝑳 𝑮 = 𝝁 𝑯   

To solve this equation, we first observe that if 𝜇(𝐻) contains a 
subgraph isomorphic to 𝐹1, then 𝜇(𝐻) cannot be the line graph 𝐿(𝐺) 
of 𝐺. Hence, the structure of 𝐻 is as follows:  𝐻 ≤ 2, since 
otherwise for  𝐻 ≥ 3, 𝜇(𝐻) contains a subgraph isomorphic to 𝐾1,3. 
Consequently, 𝜇(𝐻) contains a subgraph isomorphic to 𝐹1. Next, 
we discuss two cases depending on whether or not 𝐻 is connected. 

Case 1 

Suppose 𝐻 is connected. Since,  𝐻 ≤ 2, it follows that 𝐻 is either 
𝐾1or 𝐾2. If 𝐻 = 𝐾1, then 𝐿 𝐺 = 𝐾1 ∪ 𝐾2. Hence, 𝐺 must be (𝐾2 ∪ 𝑃3). 
If 𝐻 = 𝐾2, then 𝐿 𝐺 = 𝐶5. Therefore, 𝐺 = 𝐶5. 

Case 2 

Suppose 𝐻 is disconnected.  Since,  𝐻 ≤ 2, it follows that 𝐻 must 
be 𝐾2

   . Consequently, 𝐿 𝐺 = 2𝐾1 ∪ 𝑃3, and so 𝐺 = 2𝐾2 ∪ 𝑃4. 

From the above discussion, we have the following result.                 

Theorem 2.1 

For any two graphs 𝐺 and𝐻, the graph equation: 𝐿(𝐺) = 𝜇(𝐻) holds 
if and only if (𝐺, 𝐻) is one of the following pairs of graphs: 
(𝐾2 ∪ 𝑃3 ,  𝐾1);  (𝐶5, 𝐾2) and (2𝐾2 ∪ 𝑃4 , 𝐾2

   ). 

3.  The solutions of 𝑴 𝑮 = 𝝁(𝑯) 

Theorem 2.1 provides three pairs of graphs: (𝐾2 ∪ 𝑃3 ,  𝐾1);  (𝐶5, 𝐾2) 
and (2𝐾2 ∪ 𝑃4 , 𝐾2

   ), which are the solutions of the equation: 
𝐿 𝐺 = 𝜇(𝐻). Among these pairs, only one pair of graphs        
(2𝐾2 ∪ 𝑃4 , 𝐾2

   ) is of the form: (𝐺+, 𝐻). Hence, the solution of the 
required equation: 𝐿 𝐺+ = 𝜇(𝐻) is  𝐺, 𝐻 = (2𝐾1 ∪ 𝐾2 , 𝐾2

   ). Since, 
𝐿 𝐺+ = 𝑀(𝐺), we have the following result.       

                                 

 



H  P Patil and R Pandiya Raj                                                      ISSN 0975-3303 

20 

 

 

Theorem 3.1 

There is only one solution (𝐺, 𝐻) of the graph equation, 𝑀 𝐺 =
𝜇(𝐻), where   𝐺, 𝐻 = (2𝐾1 ∪ 𝐾2 ,  𝐾2

    ). 

4. The solution of 𝑳(𝑮)       = 𝝁(𝑯) 

Suppose 𝜇(𝐻) has one of the graphs: 𝐹1
 , 𝐹2

    and 𝐹3
    (Figure 1), as an 

induced subgraph. Then 𝜇(𝐻) cannot be the complement of the line 
graph 𝐿(𝐺) of 𝐺. Hence, the structure of 𝐻 is such that 𝐻 cannot 
have three or more components, since otherwise an induced 

subgraph 𝐹2
    would appear in 𝜇(𝐻). This shows that the equation: 

𝐿(𝐺)      = 𝜇(𝐻) has no solution. Thus, 𝐻 has at most two components. 
We discuss two cases depending on the connectivity of 𝐻: 

Case 1 

Suppose 𝐻 is a component. Then, 𝐺 is connected. Immediately, 
∆ 𝐻 ≤ 2,  since otherwise 𝐻 has a vertex 𝑣 of degree ≥ 3. Then any 
three edges of 𝐻 incident with 𝑢 form 𝐾1,3 in 𝐻. But 𝜇(𝐾1,3) contains 

a forbidden subgraph isomorphic to 𝐹2
   , (see, Figure 2). 

 

 

 

 

 

 

 

 

 

 

Fig 2 

Since 𝜇(𝐾1,3) is a subgraph of 𝜇(𝐻), it follows that the equation: 

𝐿(𝐺)      = 𝜇(𝐻) has no solution. Thus, 𝐺 is either a path or a cycle. 
However, we see that 𝐻 cannot be a cycle. On the contrary, assume 
that 𝐻 = 𝐶𝑛  for 𝑛 ≥ 3. There are two subcases depending on 𝑛: 
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Subcase 1.1. If 𝑛 = 3, then  𝐻 is a triangle 𝐾3. It is easy to check that 
the forbidden subgraph 𝐹1

  would appear in 𝜇(𝐾3), and hence 

𝐿(𝐺)      = 𝜇(𝐻) has no solution. 

Subcase 1.2  If 𝑛 ≥ 4, then 𝐻 is a cycle 𝐶𝑛  of length ≥ 4, which 
evidently contains a subgraph isomorphic to 𝑃3. But 𝜇 𝑃3  contains 
a forbidden subgraph isomorphic to 𝐹3

   , (see, Figure 3). Since 𝜇 𝑃3  

is a subgraph of 𝜇(𝐶𝑛),  𝐿(𝐺)      = 𝜇(𝐻) has no solution. Consequently, 
𝐻 must be a path 𝑃𝑚  for 𝑚 ≥ 1. Further, we see that 𝑚 ≤ 2; since 
otherwise Subcase (1.2) repeats. Thus, 𝐻  is either 𝐾1 or 𝐾2. 

 

 

 

 

 

 

 

  

Fig 3 

When 𝐻 = 𝐾1. Then 𝜇 𝐻 = 𝐾1 ∪  𝐾2, and hence𝐿 𝐺 = 𝑃3. This 
implies that 𝐺 = 𝑃4. In this case, (𝑃4 , 𝐾1) is the solution of the 
desired equation. 

When𝐻 = 𝐾2. Then 𝜇 𝐻 = 𝐶5, and hence 𝐿 𝐺 = 𝐶5. So, 𝐺 = 𝐶5. 
Consequently, (𝐶5 , 𝐾2) is the solution of the required equation. 

Case 2 

Suppose 𝐻 has exactly two components with 𝐸(𝐻) ≠ ∅. 
Immediately,  𝐻 contains a subgraph isomorphic to (𝐾1 ∪  𝐾2), and 

𝜇 𝐻  contains a forbidden –subgraph isomorphic to 𝐹2
   . Hence there 

exists no solution to the required equation. Therefore, 𝐻 must be 

𝐾2
   . Consequently, 𝜇 𝐻 = 𝐾2

   ∪  𝑃3. Since 𝜇 𝐻 = 𝐿(𝐺)      ,  𝐿(𝐺) is 𝐾4 
together with a vertex joined to two adjacent vertices. Therefore, 
𝐺 = (𝐾1,4 +  𝑒) . Thus,  (𝐾1,4 +  𝑒,   𝐾2

   ) is the solution of the required 
equation. Overall, the above discussion yields the following result. 
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Theorem 4.1 

For any two graphs 𝐺 and 𝐻, the graph equation: 𝐿(𝐺)      = 𝜇(𝐻) 
holds if and only if (𝐺, 𝐻) is one of the following pairs of graphs: 
 𝑃4 , 𝐾1 ; (𝐶5 , 𝐾2) and (𝐾1,4 + 𝑒, 𝐾2

   ). 

5. The solution of 𝑴(𝑮)        = 𝝁(𝑯) 

Now, we have determined the solutions (𝐺, 𝐻) of the equation: 

𝐿(𝐺)      = 𝜇(𝐻) in theorem 4.1. Among these solutions, only one pair 
of graphs (𝑃4 , 𝐾1) is of the form: (𝐺+, 𝐻). Therefore, the solution of 

the equation: 𝑀(𝐺)       = 𝜇(𝐻) is  𝐺, 𝐻 = (𝐾2 , 𝐾1). Thus, we have the 
following result.  

Theorem 5.1  

There is only one solution (𝑮, 𝑯) of the equation: 𝑴(𝑮)       = 𝝁(𝑯). 
This is  𝑮, 𝑯 = (𝑲𝟐,  𝑲𝟏). 

6. Problem 

For the application point of view, it is worth to solve the graph 

equation: 𝜇 𝐺 = 𝜇(𝐻)       . Then from the graph equation 𝜇 𝐺 = 𝜇(𝐻)       , 
we can get all the pairs: (𝐺, 𝐻) for which one of the graphs: 

𝐿 𝐺 , 𝐿(𝐺)      , 𝑀(𝐺) and 𝑀(𝐺)        is isomorphic to the  graph 𝜇(𝐻)       .  
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