Solutions of Graph Equations Involving Line, Middle and Mycielski Graphs

H. P. Patil* and R. P. Raj ${ }^{\dagger}$

Abstract

Let G be a graph with the vertex set $V=\left\{v_{i}: 1 \leq i \leq n\right\}$. The Mycielski graph of G denoted by $\mu(G)$ is the graph obtained from G by adding $n+1$ new vertices $V^{\prime}=\left\{v_{i}{ }^{\prime}: 1 \leq i \leq n\right\}$ and u, then for $1 \leq i \leq n$, joining $v_{i}{ }^{\prime}$ to the neighbours of v_{i} and to u. In this paper, we determine all pairs of graphs: (G, H) for which one of the graphs: $L(G), \overline{L(G)}, M(G)$ and $\overline{M(G)}$ is isomorphic to the Mycielski graph $\mu(H)$.

Keywords: Line graph, middle graph, Mycielski graph, graph valued function.

1. Introduction

All graphs considered here are finite, undirected, without loops and without multiple edges. We follow the terminology of Harary[3]. For any graph G, let \bar{G} and $L(G)$ denote the complement and the line graph of G, respectively. The end-edge graph G^{+}is the graph obtained from G by adjoining an end-edge $u_{i} u_{i}{ }^{\prime}$ at each vertex u_{i} of G. Hamada et al. showed that the middle graph $M(G)$ is isomorphic to the line graph $L\left(G^{+}\right)$.[2] $\operatorname{Let} V(G)=\left\{v_{i}: 1 \leq i \leq n\right\}$. The Mycielski graph $\mu(G)$ introduced in [1] is the graph obtained

[^0]from G by inserting $(n+1)$ new vertices $\left\{v_{i}{ }^{\prime}: 1 \leq i \leq n\right\}$ and u to G by joining each v_{i}^{\prime} to the neighbours of v_{i} and to u.

Fig 1
In this paper, we shall obtain all pairs of $\operatorname{graphs}(G, H)$, which satisfy the following four graph equations:

1. $L(G)=\mu(H)$
2. $\quad M(G)=\mu(H)$
3. $\overline{L(G)}=\mu(H)$ and
4. $\overline{M(G)}=\mu(H)$.

Here, the equality sign, = means the isomorphism between the corresponding graphs. A pair of graphs (G, H), which satisfies a graph-equation is called its solution. Throughout our discussion, a pair (G, H) is always considered as a solution of a graph-equation mentioned above.

In order to determine the solutions of the above equations, we need the result of Beineke (Theorem 8.4; p. 74).[3] A graph G is a line graph if and only if G has none of nine specified graphs: G_{i} for $1 \leq i \leq 9$, as an induced subgraph. Among these, we depict here three forbidden subgraphs, call $F_{i} 1 \leq i \leq 3$ and their complements $\overline{F_{i}}$ (Figure 1).

Further, it is noticed that for any two graphs G and H, if $\mu(H)$ has $\overline{F_{i}}, 1 \leq i \leq 3$ as an induced subgraph, then $\overline{L(G)}($ or $\overline{M(G)}=\mu(H))$ has no solution.

2. The solution of $L(G)=\mu(H)$

To solve this equation, we first observe that if $\mu(H)$ contains a subgraph isomorphic to F_{1}, then $\mu(H)$ cannot be the line graph $L(G)$ of G. Hence, the structure of H is as follows: $|H| \leq 2$, since otherwise for $|H| \geq 3, \mu(H)$ contains a subgraph isomorphic to $K_{1,3}$. Consequently, $\mu(H)$ contains a subgraph isomorphic to F_{1}. Next, we discuss two cases depending on whether or not H is connected.

Case 1

Suppose H is connected. Since, $|H| \leq 2$, it follows that H is either K_{1} or K_{2}. If $H=K_{1}$, then $L(G)=K_{1} \cup K_{2}$. Hence, G must be $\left(K_{2} \cup P_{3}\right)$. If $H=K_{2}$, then $L(G)=C_{5}$. Therefore, $G=C_{5}$.

Case 2

Suppose H is disconnected. Since, $|H| \leq 2$, it follows that H must be $\overline{K_{2}}$. Consequently, $L(G)=2 K_{1} \cup P_{3}$, and so $G=2 K_{2} \cup P_{4}$.

From the above discussion, we have the following result.

Theorem 2.1

For any two graphs G and H, the graph equation: $L(G)=\mu(H)$ holds if and only if (G, H) is one of the following pairs of graphs: $\left(K_{2} \cup P_{3}, K_{1}\right) ;\left(C_{5}, K_{2}\right)$ and $\left(2 K_{2} \cup P_{4}, \overline{K_{2}}\right)$.

3. The solutions of $\boldsymbol{M}(\boldsymbol{G})=\boldsymbol{\mu}(\boldsymbol{H})$

Theorem 2.1 provides three pairs of graphs: $\left(K_{2} \cup P_{3}, K_{1}\right) ;\left(C_{5}, K_{2}\right)$ and $\left(2 K_{2} \cup P_{4}, \overline{K_{2}}\right)$, which are the solutions of the equation: $L(G)=\mu(H)$. Among these pairs, only one pair of graphs $\left(2 K_{2} \cup P_{4}, \overline{K_{2}}\right)$ is of the form: $\left(G^{+}, H\right)$. Hence, the solution of the required equation: $L\left(G^{+}\right)=\mu(H)$ is $(G, H)=\left(2 K_{1} \cup K_{2}, \overline{K_{2}}\right)$. Since, $L\left(G^{+}\right)=M(G)$, we have the following result.

Theorem 3.1

There is only one solution (G, H) of the graph equation, $M(G)=$ $\mu(H)$, where $(G, H)=\left(2 K_{1} \cup K_{2}, \overline{K_{2}}\right)$.

4. The solution of $\overline{L(G)}=\mu(H)$

Suppose $\mu(H)$ has one of the graphs: $\overline{F_{1}}, \overline{F_{2}}$ and $\overline{F_{3}}$ (Figure 1), as an induced subgraph. Then $\mu(H)$ cannot be the complement of the line graph $L(G)$ of G. Hence, the structure of H is such that H cannot have three or more components, since otherwise an induced subgraph $\overline{F_{2}}$ would appear in $\mu(H)$. This shows that the equation: $\overline{L(G)}=\mu(H)$ has no solution. Thus, H has at most two components. We discuss two cases depending on the connectivity of H :

Case 1

Suppose H is a component. Then, G is connected. Immediately, $\Delta(H) \leq 2$, since otherwise H has a vertex v of degree ≥ 3. Then any three edges of H incident with u form $K_{1,3}$ in H. But $\mu\left(K_{1,3}\right)$ contains a forbidden subgraph isomorphic to $\overline{F_{2}}$, (see, Figure 2).

Fig 2
Since $\mu\left(K_{1,3}\right)$ is a subgraph of $\mu(H)$, it follows that the equation: $\overline{L(G)}=\mu(H)$ has no solution. Thus, G is either a path or a cycle. However, we see that H cannot be a cycle. On the contrary, assume that $H=C_{n}$ for $n \geq 3$. There are two subcases depending on n :

Subcase 1.1. If $n=3$, then H is a triangle K_{3}. It is easy to check that the forbidden subgraph \bar{F}_{1} would appear in $\mu\left(K_{3}\right)$, and hence $\overline{L(G)}=\mu(H)$ has no solution.

Subcase 1.2 If $n \geq 4$, then H is a cycle C_{n} of length ≥ 4, which evidently contains a subgraph isomorphic to P_{3}. But $\mu\left(P_{3}\right)$ contains a forbidden subgraph isomorphic to $\overline{F_{3}}$, (see, Figure 3). Since $\mu\left(P_{3}\right)$ is a subgraph of $\mu\left(C_{n}\right), \overline{L(G)}=\mu(H)$ has no solution. Consequently, H must be a path P_{m} for $m \geq 1$. Further, we see that $m \leq 2$; since otherwise Subcase (1.2) repeats. Thus, H is either K_{1} or K_{2}.

Fig 3
When $H=K_{1}$. Then $\mu(H)=K_{1} \cup K_{2}$, and hence $L(G)=P_{3}$. This implies that $G=P_{4}$. In this case, $\left(P_{4}, K_{1}\right)$ is the solution of the desired equation.

When $H=K_{2}$. Then $\mu(H)=C_{5}$, and hence $L(G)=C_{5}$. So, $G=C_{5}$. Consequently, $\left(C_{5}, K_{2}\right)$ is the solution of the required equation.

Case 2

Suppose H has exactly two components with $|E(H)| \neq \emptyset$. Immediately, H contains a subgraph isomorphic to ($K_{1} \cup K_{2}$), and $\mu(H)$ contains a forbidden -subgraph isomorphic to $\overline{F_{2}}$. Hence there exists no solution to the required equation. Therefore, H must be $\overline{K_{2}}$. Consequently, $\mu(H)=\overline{K_{2}} \cup P_{3}$. Since $\mu(H)=\overline{L(G)}, L(G)$ is K_{4} together with a vertex joined to two adjacent vertices. Therefore, $G=\left(K_{1,4}+e\right)$. Thus, $\left(K_{1,4}+e, \overline{K_{2}}\right)$ is the solution of the required equation. Overall, the above discussion yields the following result.

Theorem 4.1

For any two graphs G and H, the graph equation: $\overline{L(G)}=\mu(H)$ holds if and only if (G, H) is one of the following pairs of graphs: $\left(P_{4}, K_{1}\right) ;\left(C_{5}, K_{2}\right)$ and $\left(K_{1,4}+e, \overline{K_{2}}\right)$.

5. The solution of $\overline{M(G)}=\mu(H)$

Now, we have determined the solutions (G, H) of the equation: $\overline{L(G)}=\mu(H)$ in theorem 4.1. Among these solutions, only one pair of graphs $\left(P_{4}, K_{1}\right)$ is of the form: $\left(G^{+}, H\right)$. Therefore, the solution of the equation: $\overline{M(G)}=\mu(H)$ is $(G, H)=\left(K_{2}, K_{1}\right)$. Thus, we have the following result.

Theorem 5.1

There is only one solution $(\boldsymbol{G}, \boldsymbol{H})$ of the equation: $\overline{\boldsymbol{M}(\boldsymbol{G})}=\boldsymbol{\mu}(\boldsymbol{H})$. This is $(\boldsymbol{G}, \boldsymbol{H})=\left(\boldsymbol{K}_{\mathbf{2}}, \boldsymbol{K}_{\mathbf{1}}\right)$.

6. Problem

For the application point of view, it is worth to solve the graph equation: $\mu(G)=\overline{\mu(H)}$. Then from the graph equation $\mu(G)=\overline{\mu(H)}$, we can get all the pairs: (G, H) for which one of the graphs: $L(G), \overline{L(G)}, M(G)$ and $\overline{M(G)}$ is isomorphic to the graph $\overline{\mu(H)}$.

References

[1] G. J. Chang, Huang and X. Zhu, "Circular Chromatic numbers of Mycielski's graphs," Discrete Math., vol. 205, no. 1-3, 1999, pp. 23-37.
[2] T. Hamada and I. Yoshimura, "Traversability and connectivity of the middle graph of the graph," Discrete Math. vol. 14 no.3, 1976, pp. 247-256.
[3] F. Harary, Graph Theory, MA: Addison -Wesley, 1969.

[^0]: * Pondicherry University; hpppondy@gmail.com
 † Pondicherry University; pandiyarajmaths@gmail.com
 Research supported by CSIR, New Delhi, India.

