Further Results on Sum Labelling of Split Graphs

J Rozario Gerard ${ }^{*}$ and Lawrence Rozario Raj P^{\dagger}

Abstract

A sum labelling is a mapping λ from the vertices of G into the positive integers such that, for any two vertices $u, v \epsilon$ $\mathrm{V}(\mathrm{G})$ with labels $\lambda(\mathrm{u})$ and $\lambda(\mathrm{v})$, respectively, $u v$ is an edge iff $\lambda(\mathrm{u})+\lambda(\mathrm{v})$ is the label of another vertex in $\mathrm{V}(\mathrm{G})$. Any graph supporting such a labelling is called a sum graph. It is necessary to add (as a disjoint union) a component to sum label a graph. This disconnected component is a set of isolated vertices known as isolates and the labelling scheme that requires the fewest isolates is termed optimal. The number of isolates required for a graph to support a sum labelling is known as the sum number of the graph. In this paper, we obtain optimal sum labelling scheme for path union of split graph of star, $\mathrm{K}_{1, \mathrm{~m}} \odot \operatorname{Spl}\left(\mathrm{P}_{\mathrm{n}}\right)$ andK $\mathrm{K}_{1, \mathrm{~m}} \odot \operatorname{Spl}\left(\mathrm{~K}_{1, \mathrm{n}}\right)$.

Keywords: Sum labelling, sum graph, sum number, split graph, path union.

2010 AMS Subject Classification: 05C78

1. Introduction

All the graphs considered here are simple, finite and undirected. For all terminologies and notations we follow Harary [1] and graph labelling as in [2]. Sum labelling of graphs was introduced by Harary [3] in 1990. Following definitions are useful for the present study.

[^0]
Definition 1.1

Sum Labelling is a mapping λ from the vertices of G into the positive integers such that, for any two vertices $u, v \in \mathrm{~V}(\mathrm{G})$ with labels $\lambda(\mathrm{u})$ and $\lambda(\mathrm{v})$, respectively, $u v$ is an edge iff $\lambda(\mathrm{u})+\lambda(\mathrm{v})$ is the label of another vertex in $V(G)$. Any graph supporting such a labelling is called a sum graph.

Definition 1.2

It is necessary to add (as a disjoint union) a component to sum label a graph. This disconnected component is a set of isolated vertices known as isolates and the labelling scheme that requires the fewest isolates is termed optimal.

Definition 1.3

The number of isolates required for a graph G to support a sum labelling is known as the sum number of the graph. It is denoted as $\sigma(G)$.

Definition 1.4

(Shiama [4]) For a graph G the split graph is obtained by adding to each vertex v, a new vertex v^{\prime} such that v^{\prime} is adjacent to every vertex that is adjacent to v in G . The resultant graph is called the split graph denoted by $\operatorname{Spl}(\mathrm{G})$.

Definition 1.5

(Shee and Ho [5]) Let $G_{1}, G_{2}, \ldots . ., G_{n}, n \geq 2$ be n copies of a fixed graph G. The graph obtained by adding an edge between G_{i} and G_{i+1} for $i=1,2, \ldots, n-1$ is called path union of G.

2. Sum Labelling for Split Graphs

In [6], Gerard et al. has proved that split graph of path, star are sum graph with sum number 1 and bi-star is sum graph with sum number 2.

Theorem 2.1

Path union of split graph of star $K_{1, n}$ is a sum graph with sum number 1.

Proof

Consider a star $K_{1, n}$ with $(\mathrm{n}+1)$ vertices. Let G be the split graph of star, $\operatorname{Spl}\left(K_{1, n}\right)$. Let G^{*} be the path union of m copies of G . Let $\mathrm{v}_{1}, \mathrm{v}_{11}$, V_{12}, \qquad
\qquad V2n, $V_{m}, V_{m 1}, V_{m}$, v_{mn} be the vertices of m copies of the star $K_{1, n}$. Let $\mathrm{u}_{1}, \mathrm{u}_{11}, \mathrm{u}_{12}, \ldots \ldots \mathrm{u}_{1 n}, \mathrm{u}_{2}$, $\mathrm{u}_{21}, \mathrm{u}_{22}$, \qquad $\mathbf{u}_{\mathrm{m}}, \mathrm{u}_{\mathrm{m} 1}, \mathrm{u}_{\mathrm{m} 2}$, \qquad u_{mn} be the vertices corresponding to $\mathrm{V}_{1}, \mathrm{~V}_{11}, \mathrm{~V}_{12}, \ldots \ldots ., \mathrm{V}_{1 \mathrm{n}}, \mathrm{V}_{2}, \mathrm{~V}_{21}, \mathrm{~V}_{22}, \ldots \ldots . \mathrm{V}_{2 n}$, \qquad $\mathrm{V}_{\mathrm{m}}, \mathrm{V}_{\mathrm{m} 1}, \mathrm{~V}_{\mathrm{m} 2}, \ldots \ldots, \mathrm{~V}_{\mathrm{mn}}$ of m copies of the star $K_{1, n}$ which are added, to obtain the split graph of m copies of star. G^{*} has $3 n m$ vertices and $3 \mathrm{~nm}+(m-1)$ edges. Let x be the isolated vertex.

Define f: V $\left(\mathrm{G}^{*}\right) \rightarrow \mathrm{N}$

$$
\begin{aligned}
& f\left(v_{1}\right)=1 \quad f\left(v_{2}\right)=2 \\
& f\left(v_{i}\right)=f\left(v_{(i-1)}\right)+f\left(v_{(i-2)}\right) \text { for } 3 \leq i \leq m \\
& f\left(v_{11}\right)=f\left(v_{m}\right)+f\left(v_{(m-1)}\right) \\
& \text { for } 1 \leq i \leq m \\
& \left\{\begin{aligned}
f\left(v_{i j}\right) & =f\left(v_{i(j-1)}\right)+f\left(v_{i}\right) \text { for } 2 \leq j \leq n \\
f\left(u_{i}\right) & =f\left(v_{i n}\right)+f\left(v_{i}\right) \\
f\left(u_{i 1}\right) & =f\left(u_{i}\right)+f\left(v_{i 1}\right) \\
f\left(u_{i j}\right) & =f\left(u_{i(j-1)}\right)+f\left(v_{i}\right) \text { for } 2 \leq j \leq n \\
f\left(v_{(i+1) 1}\right) & =f\left(u_{i n}\right)+f\left(v_{i}\right) \text { if } i \neq m \\
f(x) & =f\left(u_{m n}\right)+f\left(v_{m}\right)
\end{aligned}\right.
\end{aligned}
$$

Thus, Path union of Split graph of star $K_{1, n}$ is a sum graph with sum number 1.

Theorem 2.2

$\mathrm{K}_{1, \mathrm{~m}} \odot \operatorname{Spl}\left(\mathrm{P}_{\mathrm{n}}\right)$ is a sum graph with sum number 1 .

Proof

Let $\mathrm{c}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{m}}$ be the vertices of $\mathrm{K}_{1, \mathrm{~m}}$ where c is the centre of the star. Let $\mathrm{v}_{11}, \mathrm{v}_{12}, \ldots \ldots . \mathrm{v}_{1 n}, \mathrm{u}_{11}, \mathrm{u}_{12}, \ldots \ldots \mathrm{u}_{1 \mathrm{n}}, \mathrm{v}_{21}, \mathrm{v}_{22}, \ldots \ldots, \mathrm{v}_{2 n}, \mathrm{u}_{21}$, $\mathrm{u}_{22}, \ldots \ldots, \mathrm{u}_{2 \mathrm{n}}, \ldots \ldots, \mathrm{v}_{\mathrm{m} 1}, \mathrm{v}_{\mathrm{m} 2}, \ldots \ldots, \mathrm{v}_{\mathrm{mn}}, \mathrm{u}_{\mathrm{m} 1}, \mathrm{u}_{\mathrm{m} 2}, \ldots \ldots, \mathrm{u}_{\mathrm{mn}}$ be the vertices of the m copies of the split graph of path P_{n}. The vertices $\mathrm{v}_{11}, \mathrm{v}_{21}, \ldots \ldots, \mathrm{v}_{\mathrm{m} 1}$ are attached to the vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{m}}$ respectively. Let $G=K_{1, \mathrm{~m}} \odot \operatorname{Spl}\left(\mathrm{P}_{\mathrm{n}}\right)$. Therefore the vertex set of G , $\mathrm{V}(\mathrm{G})=\left\{\mathrm{c}, \mathrm{v}_{11}, \mathrm{v}_{12}, \ldots \ldots, \mathrm{v}_{1 \mathrm{n}}, \mathrm{u}_{11}, \mathrm{u}_{12}, \ldots \ldots \mathrm{u}_{1 \mathrm{n}}, \mathrm{v}_{21}, \mathrm{v}_{22}, \ldots \ldots, \mathrm{v}_{2 n}, \mathrm{u}_{21}\right.$, $\left.u_{22}, \ldots \ldots, u_{2 n}, \ldots \ldots, v_{m 1}, v_{m 2}, \ldots \ldots, v_{m n}, u_{m 1}, u_{m 2}, \ldots \ldots, u_{m n}\right\}$. G has $2 n m+1$ vertices and $3 n(n-1)+m$ edges. Let x be the isolated vertex.

Define f: V (G) $\rightarrow \mathrm{N}$

$$
\begin{aligned}
& f(c)=1 \quad f\left(v_{11}\right)=2 \\
& \text { for } 1 \leq i \leq m \\
& f\left(v_{i 2}\right)=f\left(v_{i 1}\right)+1 \\
& f\left(v_{i j}\right)=f\left(v_{i(j-1)}\right)+f\left(v_{i(j-2)}\right) \text { for } 3 \leq j \leq n \\
& f\left(u_{i 1}\right)=f\left(v_{i(n-1)}\right)+f\left(v_{i n}\right) \\
& f\left(u_{i 2}\right)=f\left(u_{i 1}\right)+1 \\
& f\left(u_{i j}\right)=f\left(u_{i(j-1)}\right)+f\left(v_{i(j-2)}\right) \text { for } 3 \leq j \leq n \\
& f\left(v_{(i+1) 1}\right)=f\left(u_{i n}\right)+f\left(v_{i(n-1)}\right) \quad \text { if } i \neq m \\
& f(x)=f\left(u_{m n}\right)+f\left(v_{m(n-1)}\right)
\end{aligned}
$$

Hence, $\mathrm{K}_{1, \mathrm{~m}} \odot \operatorname{Spl}\left(\mathrm{P}_{\mathrm{n}}\right)$ is a sum graph with sum number 1.

Theorem 2.3

$\mathrm{K}_{1, \mathrm{~m}} \odot \operatorname{Spl}\left(\mathrm{~K}_{1, \mathrm{n}}\right)$ is a sum graph with sum number 1 .

Proof

Let $\mathrm{c}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{m}}$ be the vertices of $\mathrm{K}_{1, \mathrm{~m}}$ where c is the centre of the star. Let $\mathrm{c}_{1}, \mathrm{v}_{11}, \mathrm{v}_{12}, \ldots \ldots, \mathrm{v}_{1 \mathrm{n}}, \mathrm{u}_{1}, \mathrm{u}_{11}, \mathrm{u}_{12}, \ldots . . \mathrm{u}_{1 \mathrm{n}}, \mathrm{c}_{2}, \mathrm{v}_{21}, \mathrm{v}_{22}, \ldots \ldots, \mathrm{v}_{2 \mathrm{n}}, \mathrm{u}_{2}$, $\mathrm{u}_{21}, \mathrm{u}_{22}, \ldots \ldots, \mathrm{u}_{2 \mathrm{n}}, \ldots \ldots, \mathrm{c}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m} 1}, \mathrm{v}_{\mathrm{m} 2}, \ldots \ldots, \mathrm{v}_{\mathrm{mn}}, \mathrm{u}_{\mathrm{m}}, \mathrm{u}_{\mathrm{m} 1}, \mathrm{u}_{\mathrm{m} 2}, \ldots \ldots, \mathrm{u}_{\mathrm{mn}}$ be the vertices of the m copies of the split graph of star $K_{1, n}$. The vertices c_{1}, $\mathrm{c}_{2}, \ldots \ldots, \mathrm{c}_{\mathrm{m}}$ are attached to the vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{m}}$ of $\mathrm{K}_{1, \mathrm{n}}$ respectively. Let $\mathrm{G}=\mathrm{K}_{1, \mathrm{~m}} \odot \operatorname{Spl}\left(\mathrm{~K}_{1, \mathrm{n}}\right)$. Therefore the vertex set of $\mathrm{G}, \mathrm{V}(\mathrm{G})=\left\{\mathrm{c}, \mathrm{c}_{1}, \mathrm{v}_{11}\right.$, $v_{12}, \ldots \ldots, v_{1 n}, u_{1}, u_{11}, u_{12}, \ldots \ldots u_{1 n}, c_{2}, v_{21}, v_{22}, \ldots \ldots, v_{2 n}, u_{2}, u_{21}, u_{22}$, $\left.\ldots \ldots, \mathrm{u}_{2 \mathrm{n}}, \ldots \ldots, \mathrm{c}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m} 1}, \mathrm{v}_{\mathrm{m} 2}, \ldots \ldots, \mathrm{v}_{\mathrm{m} \mathrm{m}}, \mathrm{u}_{\mathrm{m}}, \mathrm{u}_{\mathrm{m} 1}, \mathrm{u}_{\mathrm{m} 2}, \ldots \ldots, \mathrm{u}_{\mathrm{mn}}\right\}$. G has $2 \mathrm{~nm}+1$ vertices and $3 \mathrm{n}(\mathrm{n}-1)+m$ edges. Let x be the isolated vertex.

Define f: V (G) $\rightarrow \mathrm{N}$

$$
\begin{aligned}
& f(c)=1 \quad f\left(c_{1}\right)=2 \\
& f\left(c_{i}\right)=f\left(c_{(i-1)}\right)+1 \text { for } 2 \leq i \leq m \\
& f\left(v_{11}\right)=f\left(c_{m}\right)+1 \\
& \text { for } 1 \leq i \leq m
\end{aligned} \begin{array}{r}
f\left(v_{i j}\right)=f\left(v_{i(j-1)}\right)+f\left(v_{i}\right) \text { for } 2 \leq j \leq n \\
f\left(u_{i}\right)=f\left(v_{\text {in }}\right)+f\left(c_{i}\right) \\
f\left(u_{i 1}\right)=f\left(u_{i}\right)+f\left(v_{i 1}\right) \\
f\left(u_{i j}\right)=f\left(u_{i(j-1)}\right)+f\left(c_{i}\right) \text { for } 2 \leq j \leq n \\
f\left(v_{(i+1) 1}\right)=f\left(u_{\text {in }}\right)+f\left(c_{i}\right) \quad \text { if } i \neq m \\
f(x)=f\left(u_{m n}\right)+f\left(c_{m}\right)
\end{array}
$$

Thus, $\mathrm{K}_{1, \mathrm{~m}} \odot \operatorname{Spl}\left(\mathrm{~K}_{1, \mathrm{n}}\right)$ is a sum graph with sum number 1 .

Illustration: Sum labelling for path union of split graph of star $\mathrm{K}_{1, n}$ is given in figure 2.1

$\boldsymbol{K}_{1, \boldsymbol{m}} \odot \boldsymbol{S p l}\left(\boldsymbol{P}_{\boldsymbol{n}}\right) \mathrm{K}_{1, \mathrm{~m}} \odot \operatorname{Spl}\left(\mathrm{P}_{\mathrm{n}}\right)$ is obtained by attaching a copy of $\operatorname{Spl}\left(\mathrm{P}_{\mathrm{n}}\right)$ to each pendent vertex of $\mathrm{K}_{1, \mathrm{~m}}$.

Illustration Sum labelling for $\mathrm{K}_{1, \mathrm{~m}} \odot \operatorname{Spl}\left(\mathrm{P}_{\mathrm{n}}\right)$ is given in figure 2.2

$\boldsymbol{K}_{\mathbf{1}, \boldsymbol{m}} \odot \boldsymbol{\operatorname { S p l }}\left(\boldsymbol{K}_{\mathbf{1}, \boldsymbol{n}}\right) \quad \mathrm{K}_{1, \mathrm{~m}} \odot \operatorname{Spl}\left(\mathrm{~K}_{1, \mathrm{n}}\right)$ is obtained by attaching a copy of $\operatorname{Spl}\left(\mathrm{K}_{1, \mathrm{n}}\right)$ to each pendent vertex of $\mathrm{K}_{1, \mathrm{~m}}$.

Illustration Sum labelling for $\mathrm{K}_{1, \mathrm{~m}} \odot \operatorname{Spl}\left(\mathrm{~K}_{1, \mathrm{n}}\right)$ is given in figure 2.3
$\mathrm{m}=3 ; \mathrm{n}=2$

Fig 2.3

References

[1] F. Harary, Graph theory. MA: Addison Wesley, 1972.
[2] J. A. Gallian, "A dynamic survey of graph labelling," The Electronics Journal of Combinatorics, vol. 16, 2009.
[3] F. Harary, "Sum graphs and Difference graphs," Congress Numerantium, no.72, 1990, pp. 101-108.
[4] J. Shiama, "Permutation Labelling for some shadow graphs," Int. J. Computer Applications, vol. 40, no.6, Feb. 2012.
[5] S. C. Shee, Y. S. Ho, "The cardiality of Path-union of n copies of a Graph," Discrete Math., vol. 151, 1996, pp. 221-229.
[6] J. R. Gerard, J. J. Arockiaraj and P. L. R. Raj, "Sum Labelling for some Split graphs," Int. J. Computational and Applied Maths, in press.

[^0]: * PG and Research Department of Mathematics, St Joseph's College of Arts and Science, Cuddalore, Tamil Nadu, India; rozario.gerard@yahoo.com. \dagger PG and Research Department of Mathematics, St. Joseph's College, Trichirappalli, Tamil Nadu, India; lawraj2006@yahoo.co.in.

