

# Further Results on Sum Labelling of Split Graphs

J Rozario Gerard<sup>\*</sup> and Lawrence Rozario Raj  $P^{\dagger}$ 

# Abstract

A *sum labelling* is a mapping  $\lambda$  from the vertices of G into the positive integers such that, for any two vertices  $u, v \in$ V(G) with labels  $\lambda(u)$  and  $\lambda(v)$ , respectively, uv is an edge iff  $\lambda(u) + \lambda(v)$  is the label of another vertex in V(G). Any graph supporting such a labelling is called a *sum graph*. It is necessary to add (as a disjoint union) a component to sum label a graph. This disconnected component is a set of isolated vertices known as isolates and the labelling scheme that requires the fewest isolates is termed optimal. The number of isolates required for a graph to support a sum labelling is known as the sum number of the graph. In this paper, we obtain optimal sum labelling scheme for path union of split graph  $K_{1m} \odot Spl(P_n)$ of star, and  $K_{1,m} \odot Spl(K_{1,n})$ .

**Keywords:** Sum labelling, sum graph, sum number, split graph, path union.

2010 AMS Subject Classification: 05C78

# 1. Introduction

All the graphs considered here are simple, finite and undirected. For all terminologies and notations we follow Harary [1] and graph labelling as in [2]. Sum labelling of graphs was introduced by Harary [3] in 1990. Following definitions are useful for the present study.

<sup>\*</sup> PG and Research Department of Mathematics, St Joseph's College of Arts and Science, Cuddalore, Tamil Nadu, India; rozario.gerard@yahoo.com.

<sup>&</sup>lt;sup>†</sup> PG and Research Department of Mathematics, St. Joseph's College, Trichirappalli, Tamil Nadu, India; lawraj2006@yahoo.co.in.

Gerard Rozario J and Lawrence Rozario Raj P

# **Definition 1.1**

*Sum Labelling* is a mapping  $\lambda$  from the vertices of G into the positive integers such that, for any two vertices  $u, v \in V(G)$  with labels  $\lambda(u)$  and  $\lambda(v)$ , respectively, uv is an edge iff  $\lambda(u)+\lambda(v)$  is the label of another vertex in V(G). Any graph supporting such a labelling is called a *sum graph*.

# **Definition 1.2**

It is necessary to add (as a disjoint union) a component to sum label a graph. This disconnected component is a set of isolated vertices known as *isolates* and the labelling scheme that requires the fewest isolates is termed *optimal*.

# **Definition 1.3**

The number of isolates required for a graph G to support a sum labelling is known as the *sum number* of the graph. It is denoted as  $\sigma(G)$ .

## **Definition 1.4**

(Shiama [4]) For a graph G the split graph is obtained by adding to each vertex v, a new vertex v' such that v' is adjacent to every vertex that is adjacent to v in G. The resultant graph is called the *split graph* denoted by Spl(G).

## **Definition 1.5**

(Shee and Ho [5]) Let  $G_1, G_2, \ldots, G_n$ ,  $n \ge 2$  be *n* copies of a fixed graph G. The graph obtained by adding an edge between  $G_i$  and  $G_{i+1}$  for  $i = 1, 2, \ldots, n-1$  is called *path union* of *G*.

# 2. Sum Labelling for Split Graphs

In [6], Gerard *et al.* has proved that split graph of path, star are sum graph with sum number 1 and bi–star is sum graph with sum number 2.

## Theorem 2.1

Path union of split graph of star  $K_{1,n}$  is a sum graph with sum number 1.

#### Proof

Consider a star  $K_{1,n}$  with (n+1) vertices. Let G be the split graph of star, Spl( $K_{1,n}$ ). Let G\* be the path union of m copies of G. Let v<sub>1</sub>, v<sub>11</sub>, v<sub>12</sub>, ...., v<sub>1n</sub>, v<sub>2</sub>, v<sub>21</sub>, v<sub>22</sub>, ...., v<sub>2n</sub>, ...., v<sub>m</sub>, v<sub>m1</sub>, v<sub>m2</sub>, ...., v<sub>mn</sub> be the vertices of m copies of the star  $K_{1,n}$ . Let u<sub>1</sub>, u<sub>11</sub>, u<sub>12</sub>, ...., u<sub>1n</sub>, u<sub>2</sub>, u<sub>21</sub>, u<sub>22</sub>, ...., u<sub>2n</sub>, ...., u<sub>m</sub>, u<sub>m1</sub>, u<sub>m2</sub>, ...., u<sub>mn</sub> be the vertices corresponding to v<sub>1</sub>, v<sub>11</sub>, v<sub>12</sub>, ...., v<sub>1n</sub>, v<sub>2</sub>, v<sub>21</sub>, v<sub>22</sub>, ...., v<sub>mn</sub> of m copies of the star  $K_{1,n}$  which are added, to obtain the split graph of m copies of star. G\* has 3nm vertices and 3nm + (m - 1) edges. Let x be the isolated vertex.

Define f: V (G\*) 
$$\rightarrow$$
 N

$$f(v_{1}) = 1 f(v_{2}) = 2$$

$$f(v_{i}) = f(v_{(i-1)}) + f(v_{(i-2)}) \text{ for } 3 \le i \le m$$

$$f(v_{11}) = f(v_{m}) + f(v_{(m-1)})$$

$$for \ 1 \le i \le m$$

$$\begin{cases} f(v_{ij}) = f(v_{i(j-1)}) + f(v_{i}) & \text{for } 2 \le j \le n \\ f(u_{i}) = f(v_{in}) + f(v_{i}) \\ f(u_{i1}) = f(u_{i}) + f(v_{i1}) \\ f(u_{ij}) = f(u_{i(j-1)}) + f(v_{i}) & \text{for } 2 \le j \le n \\ f(v_{(i+1)1}) = f(u_{in}) + f(v_{i}) & \text{for } 2 \le j \le n \\ f(v_{(i+1)1}) = f(u_{in}) + f(v_{i}) & \text{if } i \ne m \\ f(x) = f(u_{mn}) + f(v_{m}) \end{cases}$$

Thus, Path union of Split graph of star  $K_{1,n}$  is a sum graph with sum number 1.

#### Theorem 2.2

 $K_{1,m} \odot Spl(P_n)$  is a sum graph with sum number 1.

#### Proof

Let c, v<sub>1</sub>, v<sub>2</sub>,...., v<sub>m</sub> be the vertices of K<sub>1,m</sub> where c is the centre of the star. Let v<sub>11</sub>, v<sub>12</sub>, ...., v<sub>1n</sub>, u<sub>11</sub>, u<sub>12</sub>, ...., u<sub>1n</sub>, v<sub>21</sub>, v<sub>22</sub>, ...., v<sub>2n</sub>, u<sub>21</sub>, u<sub>22</sub>, ...., u<sub>2n</sub>, ..., v<sub>m1</sub>, v<sub>m2</sub>, ..., v<sub>mn</sub>, u<sub>m1</sub>, u<sub>m2</sub>, ...., u<sub>mn</sub> be the vertices of the m copies of the split graph of path P<sub>n</sub>. The vertices v<sub>11</sub>, v<sub>21</sub>, ...., v<sub>m1</sub> are attached to the vertices v<sub>1</sub>, v<sub>2</sub>, ...., v<sub>m</sub> respectively. Let  $G = K_{1,m} \odot Spl(P_n)$ . Therefore the vertex set of G, V(G) = {c, v<sub>11</sub>, v<sub>12</sub>, ...., v<sub>m1</sub>, u<sub>11</sub>, u<sub>12</sub>, ...., u<sub>m1</sub>, u<sub>m2</sub>, u<sub>21</sub>, u<sub>22</sub>, ...., v<sub>m1</sub>, v<sub>m1</sub>, v<sub>m2</sub>, ...., v<sub>mn</sub>, u<sub>m1</sub>, u<sub>m2</sub>, ...., u<sub>mn</sub>}. G has 2nm + 1 vertices and 3n(n - 1) + m edges. Let x be the isolated vertex.

Gerard Rozario J and Lawrence Rozario Raj P

Define f: V (G) 
$$\rightarrow$$
 N  
 $f(c) = 1$   $f(v_{11}) = 2$   
 $for \ 1 \le i \le m$   
 $\begin{cases} f(v_{i2}) = f(v_{i1}) + 1 \\ f(v_{ij}) = f(v_{i(j-1)}) + f(v_{i(j-2)}) \ for \ 3 \le j \le n \\ f(u_{i1}) = f(v_{i(n-1)}) + f(v_{in}) \\ f(u_{i2}) = f(u_{i1}) + 1 \\ f(u_{ij}) = f(u_{i(j-1)}) + f(v_{i(j-2)}) \ for \ 3 \le j \le n \\ f(v_{(i+1)1}) = f(u_{in}) + f(v_{i(n-1)}) \quad if \ i \ne m \\ f(x) = f(u_{mn}) + f(v_{m(n-1)}) \end{cases}$ 

Hence,  $K_{1,m} \odot Spl(P_n)$  is a sum graph with sum number 1.

#### Theorem 2.3

 $K_{1,m} \odot Spl(K_{1,n})$  is a sum graph with sum number 1.

#### Proof

Let c, v<sub>1</sub>, v<sub>2</sub>,...., v<sub>m</sub> be the vertices of  $K_{1,m}$  where c is the centre of the star. Let c<sub>1</sub>, v<sub>11</sub>, v<sub>12</sub>, ...., v<sub>1n</sub>, u<sub>1</sub>, u<sub>12</sub>, u<sub>11</sub>, u<sub>12</sub>, ...., v<sub>1n</sub>, c<sub>2</sub>, v<sub>21</sub>, v<sub>22</sub>, ...., v<sub>2n</sub>, u<sub>2</sub>, u<sub>21</sub>, u<sub>22</sub>, ...., u<sub>2n</sub>, ..., c<sub>m</sub>, v<sub>m1</sub>, v<sub>m2</sub>, ...., v<sub>mn</sub>, u<sub>m</sub>, u<sub>m1</sub>, u<sub>m2</sub>, ...., u<sub>mn</sub> be the vertices of the m copies of the split graph of star  $K_{1,n}$ . The vertices c<sub>1</sub>, c<sub>2</sub>,...., c<sub>m</sub> are attached to the vertices v<sub>1</sub>, v<sub>2</sub>, ...., v<sub>m</sub> of  $K_{1,n}$  respectively. Let  $G = K_{1,m} \bigcirc Spl(K_{1,n})$ . Therefore the vertex set of G, V(G) = {c, c<sub>1</sub>, v<sub>11</sub>, v<sub>12</sub>, ...., v<sub>1n</sub>, u<sub>1</sub>, u<sub>11</sub>, u<sub>12</sub>, ...., u<sub>1n</sub>, c<sub>2</sub>, v<sub>21</sub>, v<sub>22</sub>, ...., v<sub>2n</sub>, u<sub>2</sub>, u<sub>21</sub>, u<sub>22</sub>, ...., u<sub>2n</sub>, v<sub>m1</sub>, v<sub>m2</sub>, ...., v<sub>mn</sub>, u<sub>m1</sub>, u<sub>m2</sub>, ...., u<sub>mn</sub> }. G has 2nm + 1 vertices and 3n(n - 1) + m edges. Let x be the isolated vertex.

#### Define f: V (G) $\rightarrow$ N

$$f(c) = 1 f(c_1) = 2 f(c_i) = f(c_{(i-1)}) + 1 for 2 \le i \le m f(v_{11}) = f(c_m) + 1 for 1 \le i \le m \begin{cases} f(v_{ij}) = f(v_{i(j-1)}) + f(v_i) for 2 \le j \le n \\ f(u_i) = f(v_{in}) + f(c_i) \\ f(u_{i1}) = f(u_i) + f(v_{i1}) \\ f(u_{ij}) = f(u_{i(j-1)}) + f(c_i) for 2 \le j \le n \\ f(v_{(i+1)1}) = f(u_{in}) + f(c_i) for 2 \le j \le n \\ f(x) = f(u_{mn}) + f(c_m) \end{cases}$$

Thus,  $K_{1,m} \odot Spl(K_{1,n})$  is a sum graph with sum number 1.



**Illustration:** Sum labelling for path union of split graph of star  $K_{1,n}$  is given in figure 2.1

 $K_{1,m} \odot Spl(P_n)$  K<sub>1,m</sub> $\odot$ Spl(P<sub>n</sub>) is obtained by attaching a copy of Spl(P<sub>n</sub>) to each pendent vertex of K<sub>1,m</sub>.

Illustration Sum labelling for  $K_{1,m} \odot Spl(P_n)$  is given in figure 2.2



Further Results on Sum Labelling

 $K_{1,m} \odot Spl(K_{1,n})$   $K_{1,m} \odot Spl(K_{1,n})$  is obtained by attaching a copy of  $Spl(K_{1,n})$  to each pendent vertex of  $K_{1,m}$ .

**Illustration** Sum labelling for  $K_{1,m} \odot Spl(K_{1,n})$  is given in figure 2.3

m = 3; n = 2



Fig 2.3

#### References

- [1] F. Harary, Graph theory. MA: Addison Wesley, 1972.
- [2] J. A. Gallian, "A dynamic survey of graph labelling," *The Electronics Journal of Combinatorics*, vol. 16, 2009.

Gerard Rozario J and Lawrence Rozario Raj P ISSN 0975-3303

- [3] F. Harary, "Sum graphs and Difference graphs," Congress Numerantium, no.72, 1990, pp. 101-108.
- [4] J. Shiama, "Permutation Labelling for some shadow graphs," Int. J. Computer Applications, vol. 40, no.6, Feb. 2012.
- [5] S. C. Shee, Y. S. Ho, "The cardiality of Path-union of n copies of a *Graph,* " *Discrete Math.*, vol. 151, 1996, pp. 221-229.
- [6] J. R. Gerard, J. J. Arockiaraj and P. L. R. Raj, "Sum Labelling for some Split graphs," Int. J. Computational and Applied Maths, in press.