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Preclusion for Radix Triangular Mesh 
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Abstract 

In this paper we find the values of mp(Tn) and mp1(Tn)  
when  n(n+1)≡0 (mod 4). Every minimum matching 
preclusion set in an n-triangular mesh network is trivial.  
Also, mp(G) ≤ δ(G), where δ(G) is the minimum degree of 
G and mp1(G) ≤ ve(G). 

Keywords Matching, perfect matching, conditional matching, 
matching preclusion number, radix triangular mesh. 

1. Introduction 

In this paper, we use only the finite simple graphs, i.e., without 
loops or multiple edges. Let G be a graph of order n, and also 
consider this n is even. A matching M of G is a collection of pairwise 
non-adjacent edges. A perfect matching in G is a collection of edges 
such that every vertex is incident with exactly one edge in this set. 
The matching preclusion number of graph G, denoted by mp(G), is 
the minimum number of edges whose deletion leaves the resulting 
graph without a perfect matching. We define mp(G) = 0 if G has no 
perfect matchings. The concept of matching preclusion was 
introduced by Birgham et al.[1] and further studied by Cheng and 
Liptak [2, 3] with special attention given to interconnection 
networks.  In [4] Park also puts forward some results on perfect 
matching. In [1], the matching preclusion number was determined 
for three classes of graphs viz., the complete graphs, the complete 
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bipartite graphs Kn,n and the hypercubes. Hypercubes are classical 
in the area of interconnection networks and have generated a 
considerable amount of research including fault tolerant routings, 
strong connectivity properties, various Hamiltonian properties and 
some others also. In certain applications, every vertex requires a 
special partner at any given time and the matching preclusion 
number measures the robustness of this requirement in the event of 
edge failures as indicated in [1]. Hence in these interconnection 
networks, it is desirable to have the property that the only optimal 
matching preclusion sets are those whose elements are incident to a 
single vertex. 

The following propositions are obvious. 

Proposition 1.1 

Let G be a graph with an even number of vertices. Then 
mp(G)≤δ(G), where δ(G) is the minimum degree of G. 

Proof 

Deleting all edges incident to a single vertex will give a graph with 
no perfect matchings and the result follows. 

In a distributed system, it is unlikely that, in the event of random 
edge failure, all edges at some vertex fail. So naturally we raise this 
question. What are the obstruction sets for a graph with edge 
failures to have a perfect matching subject to the condition that the 
faulty graph has no isolated vertices? This gives the following 
definition. 

The conditional matching preclusion number of a graph G with an 
even number of vertices, denoted by mp1(G), is the minimum 
number of edges whose deletion leaves the resulting graph with no 
isolated vertices and without a perfect matching.[7] 

We define mp1(G) = 0 if G has no perfect matchings, and we will 
leave mp1(G) undefined if a conditional matching preclusion set 
does not exist. i,e we cannot delete edges to satisfy both conditions 
in the definition. 
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But consider the u-v-w path in the original graph and delete all the 
edges incident to either u or w but not v. Then the resulting graph 
has no perfect matchings. 

Thus we define ve(G) = min{dG(u)+dG(w)-2-YG(u, w) : there exist v 
∈ V(G) such that u-v-w is a path} where dG(.) is the degree function 
and YG(u, w) = 1 if u and w are adjacent =  0  otherwise. 

Mirroring the above proposition we get the following result. 

Proposition 1.2 

Let G be a graph with an even number of vertices. Suppose that 
every vertex in G has degree at least 3. Then mp1(G) ≤ ve(G).  

In [8] E. Cheng et al. proved so many results related to k-regular 
bipartite graph. There are many results related to perfect matching 
preclusion number and conditional matching preclusion number of 
different types of graphs and networks in  [7,9,10]. 

In the next section we try to find out the mp(G) of radix triangular 
mesh networks. 

2.  Matching Preclusion for Radix n triangular Mesh 

Definition 2.1  

An a*b mesh Ma,b is a set of vertices V(Ma,b) ={(x,y)/ 1 ≤ x≤a, 1≤y≤b} 
where any two vertices (x1,y1) and (x2,y2) are connected by an edge 
if and only if │x1-x2│+│y1-y2│=1.[5] 

Definition 2.2 

A pyramid of n levels, denoted by Pn, consists of a set of vertices 
V(Pn) = { (k,x,y)/  0 ≤ k ≤  n 1 ≤ x , ≤ y ≤ 2k}. A vertex labelled (k,x,y)  
V(Pn) is said to be a vertex at level k. All the vertices in level k 
form a 2k2kmesh network. [6] 

Definition 2.3  

A radix n-triangular mesh network, denoted as Tn, consists of a set 
of vertices V(Tn) ={ (x,y)/ 0 ≤ x + y ≤ n} where any two vertices  
(x1,y1) and (x2,y2) are connected by an edge if and only if │x1-x2│+ 
│y1-y2│ = n – 1. The number of vertices and edges in Tn is equal to 
n(n+1)/2 and 3n(n-1)/2 respectively. [6] 
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Example 2.4                                      T6 

 

 

 

 

 

 

 

 

 

Lemma 2.5   

Any triangular mesh network Tn is Hamiltonian. 

Proof 
There are two cases to be considered. 

Case 1  The network radix is odd. 

Fig. 2 shows that how a Hamiltonian cycle can be constructed in a 
triangular mesh with an odd radix. 

Case 2 The network radix is even 

Fig. 3 shows how a Hamiltonian cycle can be constructed in a 
triangular mesh with an even radix. 
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Odd radix
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Lemma 2.6  

Let n be an integer and n(n+1)  ≡ 0( mod 4). Then Tn has exactly two edge 
disjoint perfect matchings. 

Proof  
Consider a Hamiltonian cycle in Tn. Take alternate edges in it. 
These will form two edge disjoint perfect matchings M1 and M2. 

Let the edge (0, 0) and (1,0) M1. Then (0, 0) and (0,1)M2. 

Suppose M3 is another perfect matching in Tn. Then M3 contains 
either {(0,0), (1,0)} or  {(0,0), (0,1)}. 

This implies that M3 is not edge disjoint perfect matching from M1 
and M2. 

Proposition 2.7 

For Tn, where n >3 is an integer and n(n+1)≡0(mod 4), ve(G) = 3. 

Theorem 2.8 

Let n> 3 be an integer and n(n+1)≡0(mod 4). Then the following 
statements hold. 

(a) mp(Tn) = 2 

(b) Every minimum matching preclusion set in Tn is trivial. 
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Proof 
(a) By lemma 2.2, Tn has two edge disjoint perfect matchings 

M1 and M2.  

mp(Tn)  > 1 

But mp(Tn)  ≤  δ =2     by prop 1.1 

mp(Tn)  = 2   

Consider two perfect matchings M1 and M2 of Tn. 

Assume that the edges r = (0,0),(1,0) is in M1 and  s = {(0,0), (0,1)}  is 
in M2. 

Let F be a preclusion set in Tn. 

Clearly │F│ = 2. 

Tn – F has no perfect matching. ( ) 

Let F =  ,x y . 

Case I 

Let  
1x M and

1y M . 

Then M2Tn – F  

Tn – F has no perfect matching 

A contradiction. 

Similarly if x, y  M2, then we get a contradiction. 

Case II 

Let 
1x M and  1, 2ny T M M   

Then, M2Tn – F, which again is a contradiction. 

Case III 

Let x = s, y M1 and y  r  

Suppose y is an interior edge of Tn. Then y is a side of a 
parallelogram. 

Clearly opposite sides of the parallelogram are also in M1. 
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We’ve two types of parallelograms as shown in the above figure. 

Suppose y = (i,j)(i+1,j)  of the first diagram. Then (i,j+1)(i+1,j+1) 
M1 

Now M1 + {(i,j)(i,j+1), (i+1,j)(i+1,j+1)}- {y, (i,j+1)(i+1,j+1) } is a perfect 
matching in Tn - F 

This is a contradiction. 

Case IV 

Let x = s, y M1 and y  r and y is a boundary edge of Tn. Then y 
may be a side of a parallelogram as in the previous case. Then we 
get a contradiction. 

Suppose y is a side of a parallelogram as shown in the following 
figure. 

 

 

 

 

 

Suppose y = (i,j)(i,j+1)   

Then (i+1,j)(i+2,j),(i+1,j+1)(i+2,j+1) M1 

Now  M1 + {(i,j+1)(i+1,j+1), (i,j)(i+1,j)(i+2,j)(i+2,j+1)}- {y, (i+1,j)(i+2,j) 
,(i+1,j+1)(i+2,j+1) } is a perfect matching in Tn - F 

This is a contradiction. 
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Case V 

Let x = s, y M1 and y  r and y is a boundary edge of Tn. 

 

 

 

 

 

 

Suppose  y = (i,j)(i,j+1) 

Then (i+1,j)(i+2,j),(i+1,j+1)(i,j+2) M1 

Now  M1 + {(i,j+1)(i,j+2), (i,j)(i+1,j), (i+1,j+1)(i+2,j)}-  
{y, (i,j+2)(i+1,j+1),(i+1,j) (i+2,j)  } is a perfect matching in Tn - F 

This is a contradiction. 

Case VI 

Suppose x = s, y M1 and y  r and also y in the boundary of Tn. 

 

 

 

 

 

 

Suppose  y = (i, j+2)(i,j+3) 

Then (i,j)(i,j+1), (i+1,j)(i+1,j+1), (i+2,j+1)(i+1,j+2) M1 

Now  M1 + {(i,j+3)(i+1,j+2), (i,j+1)(i,j+2),(i+1,j+1)(i+2,j+1), (i,j)(i+1,j)}- {y, 
(i,j)(i,j+1), (i+1,j)(i+1,j+1), (i+2,j+1)(i+1,j+2)  } is a perfect matching in Tn - F 

This is a contradiction. 
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Case VII 

Suppose x = s, y M1 and y  r and also y in the boundary  of Tn. 

 

 

 

 

 

 

 

 

 

 

 

 

Suppose  y = (i, j+1)(i,j+2) 

Then (i,j)(i+1,j), (i+1,j+1)(i+2,j+1), (i+1,j+2)(i+2,j+2) M1 

Now  M1 + {(i,j)(i+1,j), (i+2,j)(i+3,j), (i,j+1)(i+1,j+1), (i+2,j+1)(i+2,j+2), 
(i,j+2)(i+1,j+2)}- {y, (i,j)(i+1,j), (i+1,j+1)(i+2,j+1), (i+1,j+2)(i+2,j+2) } is 
a perfect matching in Tn - F 

This is a contradiction.  

Hence the theorem                   ∎ 

Theorem 2.9 

Let  n> 3  be an integer and  n(n+1)  ≡ 0(mod 4). Then the following 
statements hold true. 

(a) mp1(Tn) = 3 

(b) Every conditional matching preclusion set in Tn is trivial. 

Proof is similar to Theorem 2.4 
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