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Orbits of Minor Bodies of the Solar System 

in the Circular Restricted Three-Body 

Problem  

Jeremy B Tatum* and Mandyam N Anandaram †  

Abstract  

A brief introduction to the circular restricted three-body 
problem (CR3BP) is given where a third body of 
negligible mass moves under the combined gravitational-
centrifugal potential of two co-rotating massive bodies 
restricted to circular orbits.  The equipotential contours of 
a variety of two body systems in the solar system are 
presented along with interesting orbits of Trojans, Hildas, 
Thule in the Sun-Jupiter system, the libration of Pluto in 
the Sun-Neptune system and choreographic orbits. 
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1. Introduction  

The complete general motion of three massive bodies moving 
under their mutual gravitation cannot be expressed in terms of 
simple algebraic solutions; rather, the motions of the three bodies 
must in the most general case be calculated numerically.  However, 
certain restricted versions of the problem are capable of relatively 
simple algebraic analysis.  In one of the most celebrated restricted 
versions of three-body motion which has many applications in 
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astronomy, two massive bodies are moving in circular orbits 
around their mutual centre of mass. If M1 and M2 are the two 
masses with a constant distance a between them then it is simple to 

show that the orbital angular speed  is given by 
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In the circular restricted three-body problem, a third body of 
negligible mass m is moving under the influence of these two 
bodies and in their orbital plane but it has no effect on their motion.   
The problem is to describe the motion of the third body relative to 
the two massive bodies.   A well-known practical application is to 
determine the motion of the asteroids under the influence of the 
Sun and Jupiter.   Another application is to consider the motion of 
clouds of gas that may be circulating in the vicinity of the two 
components of a binary star system. Yet another application is the 
placement of spacecraft at suitable locations around the Sun-Earth 
system or around the Earth-Moon system. 

The motion of the third body is conveniently described by 
supposing it to move in the gravitational potential wells of the two 
massive bodies.   The gravitational potential at a point that is at a 
distance r1 from M1 and r2 from M2 is 
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One can imagine this as being represented by two deep 
hyperboloidal wells. 

However, for many purposes it is convenient to refer the motion of 
the third body relative to the two massive orbiting bodies; that is, 
to refer its motion to a coordinate system in which the two massive 
bodies are at rest.  Such a coordinate system can be chosen so that 
its origin is at the centre of mass of M1 and M2, its xy-plane is in the 
orbital plane of M1 and M2, and these two masses are conveniently 
situated along the x-axis of this co-rotating system.  Relative to 

inertial space, the coordinate system is rotating at angular speed  
given by equation (1) above. Consider now our third body of small 
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mass and whose motion is restricted to the orbital plane of the two 
massive bodies. Suppose at some time it is at a distance r1 from M1, 
r2 from M2, and r from the centre of mass of M1 and M2.  When 
referred to such a co-rotating coordinate system, this third body 
experiences not only the gravitational attraction of the two massive 

bodies, but it also experiences a centrifugal force 2mr  flinging it 
(still in the orbital plane) away from the origin of coordinates.  Like 
the gravitational force, the centrifugal force is a conservative force, 

and the centrifugal “field” 2r  is derivable from a centrifugal 

potential function 22

2
1  r  (plus an arbitrary constant, which we 

can take to be zero). 

Thus, when referred to this co-rotating frame, our third body 
moves, as it were, in a potential given by  
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where  is given by equation (1).  This equipotential surface is 
illustrated in Figure 1. It can be thought of as a paraboloidal hill 

(that’s the centrifugal part, 22

2
1  r ) into which are sunk two deep 

hyperboloidal gravitational wells.   In Figure 2(a), we show a three 
dimensional solid model of this surface constructed at the 
departmental workshop of the University of Victoria. The three 
dots along center line from top to bottom are the collinear 
Lagrangian points and the two sideways across are the equilateral 
Lagrangian points.  Equation (3) can be re-written (with some 
effort) in x and y coordinates in the form 
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    (4)  

Here the symbols have the following meanings. x and y are 
coordinates of a point in units  of the (constant) separation a of the 
two massive bodies; 𝜇1 = 𝑀1 𝑀  is the first primary mass ratio, 
 𝜇2 = 𝑀2 𝑀  is the second primary mass ratio and 𝑀 = 𝑀1 + 𝑀2 is the total  
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Fig.1. Equipotential surface plot in 3-D drawn by Maxwell Fairbairn using Mathematica software. 

 

 

 

 

               

 

 

 

 

Fig. 2(a).  A 3-D model constructed by Mr. David Smith of  the University of Victoria. 

 

 

 

 

 

 

 

 

 

 

Fig. 2(b). This is a computer generated 3-D co-rotating equipotential surface  drawn for 𝜇2 = 0.2. 

mass of the two primaries; W  is the scaled gravitational-centrifugal 

potential in units of  ./ aGM   The unit of time is given by 1/ 
Equation (4) is also referred to as the co-rotating potential. This 
equation is used to draw the equipotential contours shown in many 
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of the figures in this article. A computer generated contour surface 
drawn for the case of 𝜇2 = 0.2 is shown in Figure 2(b). Here we can 
notice that the libration points 𝐿4 and 𝐿5  lie at potential maxima 
and the other three 𝐿1 ,𝐿2 and 𝐿3, lie lower at potential saddle like 
regions since the potential  has values  -1.420,  -1.420,  -1.599, -1.776  
and -1.902 respectively at these points. Hence we find that 𝑊 𝐿5 =
𝑊 𝐿4 > 𝑊 𝐿3 > 𝑊 𝐿2 > 𝑊(𝐿1) a result valid for all CR3B cases. 

One way to imagine the trajectory of a third body of small mass, 
referred to the rotating reference frame and hence subject to the 
two gravitational forces and the centrifugal force, is to imagine a 
small particle sliding or rolling around on the surface shown in 
Figure 1.  But this does not quite accurately describe the motion, 
because, whenever this particle moves, with a velocity v (referred 
to the rotating frame), it experiences yet another force, familiar to 
those who have studied classical mechanics, namely the Coriolis 
force, which is at right angles to its instantaneous velocity vector and 
parallel to the plane of the orbits of the two massive bodies.  In 
particular, the Coriolis force is given in magnitude and direction by 
the equation 

             vF m2                              (5) 

Here the magnitude of is given by equation (1), and its direction 
is normal to the plane of the orbits of the two massive bodies.   This 
equation may remind us of the equation for the Lorenz force on a 
moving charged particle, of charge Q, in a magnetic field B, namely 

vF Q  The analogy between  and B is evident.  We cannot 

show the Coriolis force in Figures 1, 2(a) and 2(b), because it cannot 
be derived from the gradient of a scalar potential.  But, like the magnetic 
field, it can be derived from the curl of a vector potential. We do 
not pursue that further here, since there may be danger in trying to 
push the analogy too far.   

2. Co-rotating Equipotential Contours  

It is useful to exhibit the co-rotating potential field in the form of 
co-rotating equipotential contours, as shown in Figure 3.  We 
particularly draw attention to five points, known as the Lagrangian 
points, where the gradient of the potential is zero.  They can be seen 
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in all the Figures 3 to 15. The distance scale used in these figures is 
such that one unit represents the constant distance between the two 
primaries M1 and M2. Three of the points, L1, L2 and L3, known as 
the collinear Lagrangian points, are in the line joining M1 and M2, 
and their exact position depends upon the mass ratio 𝑞 = 𝑀1 𝑀2   
or 𝜇2 = 𝑀2 𝑀 . The points L4 and L5 form an equilateral triangle 
each with M1 and M2, whatever the value of the mass ratio. These 
five points are equilibrium points, and, in principle a particle placed 
at any of these points would stay there, motionless in the rotating 
coordinate system.  However, it was shown in Figure 2(b)  that L4 

and L5 are maxima, and L1, L2 and L3 are saddle points, and therefore, 
contrary to the impression one is sometimes misled by, all five 
points are points of unstable equilibrium, and a particle situated at 
one of these points would rapidly fall away from it on the slightest 
disturbance [1]. We show in Figure 5 the orbital plane contour of 
the critical Roche lobe surface surrounding the two masses for two 
mass ratios. This is also a co-rotating equipotential contour 
corresponding to its value at the Lagrangian point L1 where the two 
Roche lobes just touch each other. It is through this point in close 
binary stellar systems that the more massive star would begin to 
suffer a streaming mass loss to its smaller companion after its 
expanding atmosphere completely fills up the part of the Roche 
lobe surface surrounding it and then expands further beyond it. 

Now, in the solar system, two massive bodies orbiting around their 
mutual centre of mass are the Sun and Jupiter.  The mass of the Sun 
is more than a thousand times the mass of Jupiter, so the centre of 
mass of the system is well within the body of the Sun, so that at 
least to a first approximation it appears that Jupiter is revolving 
around the Sun even though the more accurate statement is that in 
the opening sentence of this paragraph. Those who are familiar 
with the asteroids will know that there is a class of asteroids known  
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Fig. 3. The co-rotating equipotential contours are for the primary mass ratio 𝑞 = 1 or 𝜇2 = 0.5 . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The co-rotating equipotential contours are for the primary mass ratio 𝑞 = 2 or 𝜇2 = 1/3 . 

as “Trojans”, since they are named after heroes in the Trojan wars, and 
that they are orbiting around the Sun-Jupiter barycentre in the 
approximate vicinity of L4 and L5 – that is, they are in roughly the same 
orbit as Jupiter, but roughly 60° ahead of the planet or 60° behind the 
planet.  Readers may also be aware of the SOHO spacecraft which is in 

orbit around the Sun roughly at the 1L  Lagrangian point of the Sun-Earth 

system which is about 1.5 million kilometers away from the Earth in the 
direction of the Sun.  Since we have just stated that the Lagrangian points 
are points of unstable equilibrium, these circumstances are going to require 
some explanation! 
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Fig. 5. The critical Roche Lobe is drawn for two mass ratios (1 and 9) as the co-rotating equipotential 

contour corresponding to a minor body potential at the collinear Lagrangian point L1 calculated from 
Equation (4) in the text. The center of mass of the primaries is located at the origin (red X mark).    

 

 

 

 

 

 

 

 

 

 

Fig. 6. The co-rotating equipotential contours are for the primary mass ratio 𝑞 = 4 or 𝜇2 = 1/5 . 
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Fig. 7. The co-rotating equipotential contours are for the primary mass ratio 𝑞 = 10 or 𝜇2 = 1/11 . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The equipotential contours are for the primary mass ratio 𝑞 = 25 or 𝜇2 = 1/26. Notice here 

that as  𝑞 > 24.96  or  𝜇2 < 1/25.96  theoretical analysis indicates that for minor bodies of negligible 
mass stable orbits around the Lagrangian points are just possible in this system (see text).  

As far as the Trojan asteroids are concerned, the explanation, 
qualitatively, is this.  In the rotating reference frame, no Trojan is 
exactly at L4 or L5. Referred to the rotating frame, the asteroids are 
in the general vicinity of these points but are in clockwise orbit 
around them, in orbits that are not very dissimilar in shape to the 
equipotential curves of Figures 3 to 8. Imagine a small particle 
rolling clockwise around the summits of the potential hills at L4 
and L5. As it moves around the hill is a clockwise direction, the 
Coriolis force tends to push it up the hill and prevents it from rolling 
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away.  If the particle is in counterclockwise motion around L4 or L5, 
however, the Coriolis force will straightway send it rolling down 
the hill. So it is the Coriolis force that allows stable orbits around L4 
and L5, although the points themselves are unstable.  

Detailed analysis of the motion shows, however, that, in order for 
such orbits to be stable, the mass ratio 𝑞 = 𝑀1 𝑀2  must be greater 
than 24.9599358 (or, 𝜇2 = 𝑀2 𝑀  must be less than 0.03852089).  This 

exotic-looking number is actually   25 + 3 69 2 , being a solution 

of the equation 𝑞2 − 25𝑞 + 1 = 0 but we shall not derive that 
condition here.   In any case, the condition is well-satisfied for the 
Sun-Jupiter system, for which 𝑞 = 1047.35 or the Earth-Moon 
system for which q = 81.3. However, such stable orbits are not 
possible at a saddle point, such as L1. In order to keep the SOHO 
spacecraft in the vicinity of L1 a small hydrazine thrust is given to 
the spacecraft every three months or so. Similar is the case of GAIA 
spacecraft which has recently been positioned at the Sun-Earth 
Lagrangian point 𝐿2 in order to carry out unobstructed astrometry 
of about a billion stars in our galaxy.  

3. Orbits of Minor Bodies 

We have computed a few interesting cases of particle orbits in the 
orbital plane of the two primary masses by integrating the 
expressions for its acceleration components given below using the 
same notation as well as scaling adopted in Equation(4): 

                             𝑥 = 𝑥 + 2𝑦 −
𝜇1 𝑥+𝜇2 

𝑟1
3 −

𝜇2 𝑥−𝜇1 

𝑟2
3                        (6) 

                             𝑦 = 𝑦 − 2𝑥 −
𝜇1𝑦

𝑟1
3 −

𝜇2𝑦

𝑟2
3                                        (7) 

Here, terms with a single dot are velocities and those with two dots 
are accelerations. The terms 2𝑦  in Equation (6) and −2𝑥  in Equation 
(7) are the respective Coriolis acceleration components obtained 
from Equation (5). These two terms do not vanish even at the 
Lagrangian points and they cause an oscillatory rolling motion 
called libration especially around L4 and L5.  As this is an initial 
value problem (IVP) each orbit is started using a selected set of 
initial positions and velocities [3, 8]. The orbit integration over a 
suitable period is carried out using either a fourth order Runge-
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Kutta scheme or  one of python scipy library functions such as 
odeint() or dopri5() for more accurate computation. 

We start with an illustration in Figure 9 of the possible tadpole 
shaped libratory orbits of hypothetical dust particles or asteroids 
around the L4 and L5 points in our own Earth-Moon system which 
has a mass ratio of 81.3. The orbits are traced out by dots whose 
spacing varies with the speed of the asteroid. At both the ends of 
the tadpole orbit this speed is a minimum and hence the dots 
appear to get much closer there. This would imply that had real 
asteroids been present they would spend more time there, then 
pick up speed as they moved towards the other end of the tadpole 
orbit and slow down again at the other end.  In the real non-inertial 
situation we should remember that the particle is also orbiting the 
Earth with the same speed as the Moon and so its actual velocity is 
the vector sum of its orbital velocity and the velocity in its tadpole 
orbit around the L4 or L5 point. While this is true for the minor 
body in any circular restricted 3 body system the period of its 
libration alone exceeds the orbital period by a few multiples. 

 

 

 

 

 

 

 

 

 

 

Fig. 9. A pair of tadpole shaped libratory orbits of an asteroid around each equilateral Lagrangian 

point L4 and L5 is shown here although no such objects are known for the Earth-Moon system. This 

figure has a scale of 384,000 km/unit. 

We now illustrate a similar situation in Figure 10 showing a pair of Trojan 
asteroid orbits around the L4 and L5 points each of the Sun-Jupiter system. 
Here the spacing of dots reflects the variation in the speed of a Trojan in 
its tadpole orbit and the clustering of dots at the pointed end directed 
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toward L3 indicates that the speed is a minimum there. If a large number 
of Trojans with same orbital parameters were to be scattered along the 
orbit then they would cluster around the pointed end. If the outer tadpole 
orbit had been longer it would have resulted in a horse-shoe shaped orbit 
around all the three points L4, L3 and L5. The period of the outer tadpole 
orbit has been calculated as 223 years whereas that of the inner tadpole 
orbit is 151 years.  For a very small orbit in the immediate vicinity of the 
Lagrangian point, the “tadpole” becomes almost an ellipse, with a limiting 
period for an infinitesimally small orbit of 147.4 years.  Since the Trojans 
share with Jupiter the same period of revolution around the Sun we can 
say that they are in a 1:1 orbital resonance.  

 

 

 

 

 

 

 

 

 

 

Fig. 10. A pair of tadpole shaped Trojan asteroid orbits around L4 and a mirror image pair of Trojan 

asteroid orbits around the L5 relative to the planet.   The figure has a scale of 5.2 AU/unit. 

There is a group of asteroids known as Hildas, after their 
eponymous member (153) Hilda, which are characterized by orbits 
whose periods are about two-thirds of that of the planet Jupiter. We 
show in Figure 11 the ideal stable orbit of a Hilda asteroid starting 
from its perihelion position when collinear with the Sun and 
Jupiter.  In Figure 12 we show the positions of 790 of these 
asteroids at a particular instant of time, January 1, 2009, relative to 
the planet Jupiter.  It is seen that they are all situated around a 
triangle, with particular concentrations around the L3, L4 and L5 
points of the Sun-Jupiter system.  For the Sun-Jupiter system, the 
mass ratio q is large (1047.3), and L3 then forms approximately an 
equilateral triangle with L4 and L5.  We can understand the 
distribution of the Hilda asteroids by looking at their orbits 
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referred to a rotating reference frame in which Jupiter is stationary.  
The orbits of these asteroids have periods equal to two-thirds of 
that of Jupiter and with several eccentricities, referred to an inertial 
reference frame as well as to the rotating reference frame.  In the 
latter frame they all have equilateral triangle symmetry (symmetry 
of the type known in group theory as C3v symmetry).   In 
particular, Hilda itself (and indeed most of the members of the 
Hilda family) has an eccentricity of about 0.1.   We can imagine the 
orbit of a Hilda by thinking of a particle sliding on the 
gravitational-centrifugal potential surface and lurching from one 
equilateral Lagrangian point to the next.   At each of L3, L4 and L5, 
the Hilda is at an aphelion of its orbit; it is moving slowly there and 
spends a lot of time near the Lagrangian point, where its potential 
energy is large.  Then it hastily and briefly slips below the rim of 
the solar gravitational well, and scuttles rapidly up to the next 
equilateral Lagrangian point.  Because of this motion, it is easy to 
see why, if you take an instantaneous snapshot of the positions of 
all the Hildas at some arbitrary moment of time, all of them will be 
strung out along the “Hilda triangle”, but with particular 
concentrations at the Lagrangian (aphelion) points, where they are 
moving slowest and spending most of their time. 

Many asteroids exhibit a tendency to oscillate about a Lagrangian 
point or slide from one Lagrangian point to the next and back. As 
stated earlier this is referred to as a libration and so the Lagrangian 
points themselves are also termed as libration points. A libration 
cycle is a complete oscillation about the libration points concerned. 
When any Hilda group asteroid starts some distance away from its 
perihelion position its triangle orbit oscillates around this position 
(and the three points L3, L4 and L5) with amplitude of about 40 
degrees which constitutes its libration cycle and the period is known 
to be 270 years. This cycle is spread over nearly 23 orbits of Jupiter. 
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Fig. 11. Ideal non-librating orbit of a Hilda group asteroid starting from its collinear perihelion point. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. This diagram shows the positions of 790 Hildas (black dots)  in their orbits clustering around 

L3, L4 and L5 points,  1483 Trojans (blue dots)  clustering around the two equatorial Lagrange points  
L4 and L5 of  Jupiter are shown as on 2009 January 1 from data kindly made available by Prof. Aldo 

Vitagliano, University of Napoli Federico II, Italy.  An animated version of this figure can be seen at  

[7].  All Hildas move in equilateral triangular orbits similar to that shown in Figure 11 and all Trojans 
execute tadpole orbits similar to those  in Figure 10 as well as horse shoe shaped libratory orbits.   

We show in Figure 13 the ideal non-librating orbit of Thule whose orbital 
period bears a ratio of ¾ with that of Jupiter. Thus the orbit looks like a 
square with its edges rounded off. We next show how the well known 
libration cycle of Pluto develops around the co-rotating Sun-Neptune 
system in the same CR3BP approximation which here also neglects its 
large inclination with the ecliptic. Pluto’s orbital period of 248.43 years  
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Fig. 13. Here the ideal non-librating orbit of Thule is shown starting from its perihelion position 

between the Sun and Jupiter. The scale of the figure is also 5.2 AU/unit.  

locks it into an exact resonance of 3:2 with Neptune’s orbital period 
of 165.62 years. As Pluto has a large eccentricity of 0.247 compared 
to Neptune’s 0.008 (neglected here), this dwarf planet, as the 
current IAU classification of Pluto goes, comes closer to the Sun 
than Neptune. Thus we see in Figure 14 two complete orbits of 
Pluto which means that Neptune would have done three complete 
orbits during this period of 497 years which constitutes one basic 
cycle. The spacing between the dots representing Pluto’s orbit show 
its speed to be the lowest near its perihelion point located near L4 at 
top left.  Pluto can be seen to commence its libration from this point. 
The next basic cycle with two orbits of Pluto is similar but the 
figure is now slightly rotated by about 3.8 degrees anti-clockwise 
toward the ordinate. This drawing also indicates that Pluto never 
approaches Neptune closer than about 17 AU. 

The last Figure 15 shows the situation after Pluto has completed 20 
basic cycles and 9940 years elapse. Now the first basic cycle has 
swung by 76 degrees anti-clockwise to the left. Pluto is slightly to 
the right of L5 in this figure and it has thus completed half a 
libration cycle. It is now starting its reverse (that is, clockwise)  
swing of another 20 basic cycles or 76 degrees over a further period 
of 9940 years to reach the same vicinity of L4 point it started from. 
Thus a libration cycle of Pluto takes about 19880 years (sidereal 
time) in the co-rotating frame of the Sun-Neptune system. 
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Fig. 14. Neptune (labelled N) is located to the right of the Sun (labelled S)  and the scale of this figure 

is 30.16 AU/unit. Pluto starts from L4 , completes two orbits traced out by dots spaced according to 
the speed of the planetoid and returns to the same point in 497 years. 

 

 

 

 

 

 

 

 

   

 

 

Fig. 15. Pluto is near the trailing point L5 now after completing 20 basic cycles. Note that the basic 

cycle of Figure 14 is identified here as a string of red dots (Figure drawn using Pylab software.) 

4. Figure of Eight Orbits of Three Bodies of Equal Mass  

We shall now briefly consider the recent discovery of a surprisingly 
simple and stable periodic orbit for the Newtonian problem of 
three equal masses in a plane whose existence was rigorously 
proved [9]. This three body orbit has zero total angular momentum 
and a very rich symmetry pattern. The most surprising feature is 
that the three bodies chase each other around a fixed eight-shaped 
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curve visiting by turns  every "Euler configuration" in which one of 
the bodies sits at the midpoint of the segment defined by the other 
two as shown in Figure 16. Each body traverses a one third section 
of the orbit in a time T/3 where period T is  6.32591398 units.  The 
starting position of each body is marked by a large circle (colored 
red, blue and green respectively). These are  joined together by a 
straight line (dashed cyan). These positions are based on initial 
position coordinates while each body starts its orbit along the 
directed arrow shown with its  initial velocities as given in [9] and 
are also reproduced here as a scaled planar position and velocity 
array [x0, y0, vx0, vy0] to enable dynamic simulation by interested 
readers:  

Body No.1:  [ 0.97000436, -0.24308753,   0.466203685, 0.43236573 ] 

Body No.2:  [-0.97000436,  0.24308753,   0.466203685, 0.43236573 ] 

Body No.3:  [       0.0,                0.0,        -0.93240737, -0.86473146 ] 

In this scaled system, G = 1 and each body has unit mass. The 
figure-of-eight orbit is so gracefully executed that the motion is 
called choreographic since each body moves periodically in a single 
closed orbit. The small dots in front of each body position along its 
orbit  are the successive positions of the respective bodies spaced at 
equal time intervals of T/36 and hence  they show the speed of the 
body along its orbit. In Figure 17 the complete orbit travelled by 
each body in time T is shown. As each body moves 3 dots further 
along (a time T/12 later) it occupies the vertices of an isosceles 
triangle formed by dashed blue lines. This is a triangular  
configuration of the three bodies. The Euler configuration appears 
again (dotted cyan) after moving three dots further on. Then a 
mirror image of the first triangular configuration appears (dotted 
blue) after each body moves three dots further along.  In all such 
recurring configurations the bodies take their turn at every 
available position. Orbits of this type exist only in the domains of 
theoretical mechanics and computational simulation but there 
appears to be little chance of an actual discovery by ground based 
and spacecraft borne astronomical instruments.   
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Fig. 16. Choreographed figure of 8 orbit of three bodies of equal mass. 

                   

 

 

 

 

 

 

 

 

 

Fig. 17. The complete orbit of each of the three masses is shown here. 

 

5. Conclusion  

We have shown that a variety of interesting minor body orbits exist 
which are influenced by many two-body systems dominated by the 
sun and a planet. It is clear that while the solar system is really a 
complex n-body problem it admits many levels of simplification. At 
the basic level we are familiar with many two body systems whose 
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dynamics can be understood in terms of the well known Kepler's 
laws of motion. Now we have shown here that at the next level of 
simplification the circular restricted three body systems offer a 
means of computing many types of observable minor body orbits. 
Among the many minor bodies of interest the Trojans are a large 
group of asteroids trapped close to the equatorial Lagrangian 
points of the associated planet.As of January 2014, according to [4], 
5946 Trojan asteroids have been identified. These comprise 1 Sun-
Earth Trojan, 5 Sun-Mars Trojans, 5930 Sun-Jupiter Trojans, 1 Sun-
Uranus Trojan and 9 Sun-Neptune Trojans. It has been a 
challenging research task to discover these objects since they are 
faint, far away and need to be identified in a dense field of similar 
background objects. Many more Trojans in many of the sun-planet 
systems and also of the planet-moon systems in our solar system 
await discovery and we invite younger readers to take up this 
challenging research opportunity. A great deal of information 
including possible technological applications may be found in [2, 5, 
7]. Many techno-commercial ventures are already active seeking to 
drag multi-kilo-ton sized asteroids orbiting near earth (NEO) to the 

inner Lagrangian point 1L  of the Earth-Moon system and mine 

them for valuable minerals. 
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