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Using Different Solvent Polarity Parameters 
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Abstract 

 
The solvent effect on absorption and fluorescence spectra 
of a ketocyanine dye 2,5-di[(E)-1-(4-
dipropylaminophenyl) methylidine]-1-cyclopentanone 
(2,5-DPAPMC) is analysed using   Lippert-Mataga bulk 
polarity function, Reichardt’s microscopic solvent polarity 
parameter and Kamlet’s multiple linear regression 
approach. The spectral properties better follows 
Reichardt’s microscopic solvent polarity parameter than 
Lippert-Mataga bulk polarity parameter. This indicates 
the presence of both general solute – solvent interactions 
and specific interactions. Kamlet’s multiple linear 
regression approach indicates the major role of 
polarizability/dipolarity solvent influence than HBD and 
HBA.  The spectral data in different solvents is used to 
estimate excited state dipole moment using theoretically 
determined ground state dipole moment. The excited 
state dipole moment of dye is found to be larger than its 
corresponding ground state dipole moment and, ground 
and excited state dipole moments are not parallel, but 
subtends an angle of 29o.   
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1. Introduction 

The investigation on solvatochrimism in organic fluorophores has 
been a subject of interesting study in recent years [1-6]. These 
investigations have significant importance in the field of 
photophysics and photochemistry. Accordingly, photophysical 
properties like absorption and fluorescence spectral shifts, 
fluorescence quantum yield (Φf), fluorescence life time (τf), etc., 
have been a subject of several investigations [7, 8]. The data from 
solvatochromism can be used to determine the electric dipole 
moment of molecules in the excited states. The knowledge of dipole 
moment of electronically excited molecules is useful in designing 
nonlinear optical materials [9], in elucidation of the nature of the 
excited states and also it reflects the charge distribution in the 
molecule.  

The spectral properties of ketocyanine dyes have been the subject 
of intensive investigations in previous years [10–25]. The 
pronounced solvent effects in both absorption and emission spectra 
of these dyes make them promising probes for monitoring micro-
polarity, hydrogen-bond donating interaction, metal ion sensing, 
investigation of the cell membrane structures, evaluating the micro-
environmental characteristics of biochemical and biological systems 
and many others [26-31]. Even though many investigations have 
been carried out on spectral properties of ketocyanine dyes in 
general and 2,5-di[(E)-1-(4-dipropylaminophenyl) methylidine]-1- 
cyclopentanone  (2,5-DPAPMC) in particular, there is a lack of 
information on the analysis of spectral properties in terms of 
different solvent polarity parameters and, estimation of  ground 
and excited state dipole moments to the best of present knowledge. 
This motivated to carry out the present work. The aim of the 
present work is to systemically analyse solvent effects on 
absorption transition energy, fluorescence transition energy and 
stoke’s shift using different solvent polarity parameters and 
estimate ground and excited-state dipole moments of 2,5-
DPAPMC. The molecular structure of 2,5-DPAPMC is given in 
Figure 1.  
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Fig. 1. Molecular structure of 2,5-DPAPMC 

 

2. Theoretical Background 

The Lipper-Mataga bulk solvent polarity parameter (F(ε,n)) values 
of solvents used in the present study were calculated using 
equation (1) [32, 33], 

2

2

1 n 1
F( ,n)

2 1 2n 1

  
  

                  
(1) 

where ε and n are respectively dielectric constant and refractive 
index of respective solvents.  

The microscopic solvent polarity parameter ( T

NE )
 
values of solvents 

were taken from literature [27].  

The multiple linear regression method proposed by Kamlet and co-
workers [34-36] has also been used to correlate absorption 

transition energy( a ), fluorescence transition energy (
f ) and 

stoke’s shift(  ) with an index of the solvents 
dipolarity/polarizability which is a measure of the solvent’s ability 
to stabilize a charge or dipole through nonspecific dielectric 

interactions (*), and indices of the solvent’s hydrogen-bond donor 
(HBD) strength (α) and hydrogen-bond acceptor (HBA) strength 
(β), according to the equation (2); 

0y y a b c *                                             (2) 

where y is the spectroscopic property under consideration, y0 is 
respective spectroscopic property in gas phase, a, b,  and c are 
respectively measures of solvents HBD, HBA and 

[HC(H3C)2]2N N[(CH3)2CH]2

O
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dipolarity/polarisability. The theoretical ground state dipole 
moment (µg) of the dye was obtained by quantum chemical 
calculations. The B3LYP model which is based on density 
functional theory was used. The 6-31G(d) basis set was employed 
in the calculation. All the computations were carried out using 
Gaussian 09 program [37] on a Pentium – 4 PC.   

Solvent dependence of absorption and fluorescence band maxima 
was used to estimate the excited-state dipole moment and is 
determined according to Bakshiev’s and Kawski-Chamma-Viallet’s 
[38-44]   equations (3) and (4) as given below:  

 ),(11 nFmfa 
constant              (3) 

a f
2 2m F ( ,n)

2

  
   constant                           (4)                                                     

where a and f
 are the absorption and fluorescence maxima 

wavenumbers in cm-1 respectively, and    
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From equations (3) & (4), the plots of 
)( fa  

versus ),(1 nF  , and

2/)( fa  
 versus ),(2 nF   are linear with slopes m1 and m2 

respectively and are given below: 
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where g and e are ground and excited dipole moments of a 
molecule respectively,   h is Planck’ s constant, c is the velocity of 



J Thipperudrappa                           Study of Solvent Effect in 2,5-DPAPMC Dye           

105 
 

light and 𝑎  is Onsager cavity radius of a molecule respectively. The 
Onsager cavity radius of 2,5-DPAPMC was estimated using the 
method suggested by J. T. Edward [45]. 

If the ground and excited states are parallel, the following 
expressions can be obtained on the basis of above equations [46] 

  

1/ 2
3

2 1
g

1

m m hca

2 2m

 
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If dipole moments e and g are not parallel to each other but form 

an angle , then  can be calculated using equation (9). 
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We have also used another method based on empirical solvent 

polarity parameter N

TE  to estimate excited state dipole moment. 

This method
 

correlates the spectral shift better than the 
traditionally used bulk solvent polarity functions. In this method 
the problem associated with the estimation of Onsager cavity 
radius is minimized. Also, this polarity scale includes 
intermolecular solute/solvent hydrogen bond donor/acceptor 
interactions along with solvent polarity. The theoretical basis for 

the correlation of the spectral band shift with  is according to 

the equation (10) [47] 
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constant           (12) 

where B  and Ba are the change in dipole moment and  Onsager 

cavity radius respectively of the Betaine dye, and  and a  are the 

corresponding quantities of the molecule of interest. The change in 

dipole moment   can be extracted from the slope of the plot of (

N

TE
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a f  ) versus N

TE  using the reported values of B = 9D and Ba

= 6.2Å.  

3. Results and Discussion 

3.1. Analysis of solvatochromism  

Solvent polarity function values F(ε, n), F1(ε, n), F2(ε, n) and N

TE  for 

various solvents used in the present study are collected in Table 1. 
The absorption and emission maxima, respective wave numbers, 
stokes shift and arithmetic mean of stokes shift values (in cm−1) for 
2,5-DPAPMC dye in different solvents are given in Table 2. 
Absorption and emission maxima were taken from reference [22]. 
From Table 2, it is observed that when solvent is changed from 
non-polar toluene to acetonitrile which is a polar aprotic solvent, 
there is a   spectral band shift of 11nm in the absorption spectrum, 
whereas it is 35 nm for methanol which is a polar protic solvent. 
Also, when solvent is changed from non-polar toluene to a polar 
aprotic solvent acetonitrile, there is a spectral band shift of 92 nm in 
the fluorescence spectrum, whereas it is 153 nm for a polar protic 
solvent methanol. This implies that the ground state energy 
distribution is less affected by change in polarity and hydrogen 
bonding characteristics of solvent compared to excited state. The 
stokes’ shift values increases with increase in solvent polarity. The 
stokes’ shift of 4540 cm-1 is observed in polar protic solvent 
methanol and 3880 cm-1 in case of polar aprotic solvent acetonitrile. 
These observations indicate the sensing ability of 2,5-DPAPMC to 
the polarity and hydrogen bonding characters of the solvents. The 
observed solvatochromic behavior could be due to the presence of 
two tautomeric forms of 2,5-DPAPMC (keto and charged enol 
forms, Figure 2).  

The contribution of both tautomers in solution is governed by the 
nature and polarity of the used solvents. The less polar keto form 
contributes mainly in non- and less polar solvents. In contrast the 
highly polar enol form predominates in polar and strong hydrogen 
bonding donor solvents, thus, causing larger spectral shifts [1]. 
Further, both absorption and fluorescence band maxima undergoes 
pronounced red shifts with increase in solvent polarity. The 
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observed solvent sensitivity is understandable in terms of  * 

with intramolecular charge transfer (ICT) from dipropyl amino 
group to the carbonyl oxygen.  

 

Table 1. The Values of Solvent Polarity Functions 

 

 

 

 

 

 

 

 

 

 

 

           a Solvents are listed in the order of increasing
N

TE                                               
b Lippert-Mataga solvent polarity function                                                               
c Bakhshiev’s solvent polarity  function                                                                    
d Kawaski-Chamma-Vialet solvent polarity function                                                

e 
N

TE  values taken from Ref. [27]            

Table 2.  Solvatochromic Data of 2,5-DPAPMC in Different Solvents 

                                                                           
                                                                                                                 

 
 
 
 
 
 
 
 
 
 

 

To get further insight on the solvatochromic behavior of 2,5-
DPAPMC, spectroscopic properties are correlated with relevant 

solvent polarity scales. The spectroscopic properties a ,
f  and   

are plotted as a function of Lipper-Mataga solvent polarity 
parameter (or orientation polarizability) F(ε, n). The least square 
correlation analysis gave a better correlation in case of 

Solventsa Fb F1
c F2

d 
N

TE e 

Toluene 
Dioxane 
Butyl Acetate 
DMF 
Acetonitrile 
Isopropanol 
Ethanol 
Methanol 

0.0131 
0.0205 
0.1729 
0.2745 
0.3060 
0.2743 
0.2893 
0.3087 

0.0288 
0.0415 
0.4156 
0.8357 
0.8627 
0.7701 
0.8138 
0.8545 

0.3498 
0.3074 
0.4723 
0.7096 
0.6643 
0.6412 
0.6521 
0.6507 

0.0990 
0.1640 
0.2410 
0.3860 
0.4600 
0.5460 
0.6540 
0.7620 

 

Solvents 
  a 
(nm) 

  a                                        

(cm-1) 
    f                                                          
  (nm) 

  f  

(cm-1) 
(a -f)  
(cm-1) 

(a +f)/2            
    (cm-1)  

Toluene 
Dioxane 
Butyl Acetate 
DMF 
Acetonitrile 
Isopropanol 
Ethanol 
Methanol 

464 
463 
460 
482 
475 
486 
492 
499 

21560 
21580 
21740 
20760 
21040 
20580 
20320 
20060 

491 
533 
536 
581 
583 
599 
625 
644 

20360 
18760 
18660 
17220 
17160 
16700 
16000 
15520 

1200 
2820 
3080 
3540 
3880 
3880 
4320 
4540 

20960 
20170 
20200 
18990 
19100 
18640 
18160 
17790 
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fluorescence(r = 0.89) and stokes’ shift (r = 0.89) as compared to 
absorption (r = 0.78). The relatively poor correlation in case of 
absorption implies that Lippert-Mataga solvent polarity parameter 
is not a complete valid polarity scale to explain solvent effects in 
the present case. This could be due to the reason that this method 
not consider specific solute – solvent interactions such as hydrogen 
bonding effect, complex formation and also ignore molecular 
aspects of solvation. The poor correlation of absorption transition 
energies with F(ε, n) indicates the role of hydrogen bonding effect 
in the present case, as is evident from very large spectral shifts in 
polar protic solvents. Therefore, an attempt has been made to 

explain spectroscopic properties by solvent polarity parameter N

TE .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 2. Keto and charge-separated enol resonating structures of 2,5-DPAPMC. 

The a ,
f  and  are correlated with the microscopic solvent 

polarity parameter N

TE . The least square correlation analysis gave a 

O
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better correlation for all the three spectral properties a  (r = 0.95), 

f  (r = 0.97) and   (r = 0.91). This implies that spectroscopic 

properties a ,
f  and 

 
of 2,5-DPAPMC have better dependence 

on N

TE  compared to F(ε, n). The better correlation of  with N

TE  

also confirms the presence of a general solute-solvent interactions 
as well as hydrogen bonding interactions.  

In order to get information about the individual contributions of 
hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) 

abilities of the solvents on the spectroscopic properties, a , f and 

 are correlated with solvatochromic parameters ,  and * using 
multiple regression. The multiple regression analysis data along 
with correlation coefficients is given in equation (13). 

1 *

a (cm ) 22891 1209 48 1695 ; r 0.99        
 

1 *

f (cm ) 23090 1608 1130 2203 ; r 0.93      
                   (13)       

1 *(cm ) 1846 1923 3747 3856 ; r 0.78        

From above equations it is clear that non-specific dielectric 

interaction (*) has the major solvent influence. However, the 
contribution of HBD and HBA parameters cannot be neglected. It is 

clear from multiple regression analyses of a and f  with better 

correlation coefficients, HBD() influence is more than HBA ().  

3.2. Estimation of ground and excited state dipole moments 

The ground state dipole moment of 2,5-DPAPMC was obtained 
using quantum chemical calculation following geometry 
optimisation and is found to be 5.16 D. The optimized molecular 
geometry with the direction of dipole moment is shown in Figure 3.  
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Fig.3. Optimized molecular geometry of 2,5-DPAPMC 

Figure (4) shows the plots of )( fa   versus ),(1 nF   (Figure 4(a)) 

and 2/)( fa    versus  ),(2 nF    (Figure 4(b)). The linear analysis 

was done and the data was fit to a straight line. The corresponding 
values of slopes, intercepts and correlation coefficients are collected 
in Table 3.  In both the cases the correlation coefficients are more 
than 0.90 with selected number of data points. The excited state 
dipole moment (µe) is calculated from the slopes of respective plots 
and are given in Table 4. 

From Table 4, it is clear that calculated excited state dipole 

moments from Bakshiev’s (eb) and Kawski-Chamma-Viallet’s  (ec) 
equations are fairly in good agreement with each other. The excited 

state dipole moment is also calculated using polarity parameter N

TE  

according to equation (12) and Figure 4(c). The value of excited 
state dipole moment calculated from this method is represented as 

ed  and is also collected in Table 4. This value is less than eb and 

ec which are calculated from Bakshiev’s and Kawski-Chamma-
Viallet’s equations. This could be due to the fact that, methods 
based on Bakshiev’s and Kawski-Chamma-Viallet’s equations not 
consider specific solute–solvent interactions such as hydrogen 
bonding effect, complex formation and also ignore molecular 
aspects of solvation, whereas these aspects are included in the 

method based on N

TE [27]. 
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Fig.4. Plots of  (a) 

1
( )(cm )a f


  

versus F1(ε,n)  (b) plot of 

1
( ) / 2(cm )a f


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versus 

F2(ε,n) and (c) Plot of 

1
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versus  

T
EN  

Table 3.  Slope (m), Intercept (C), Correlation Coefficient (r) and 
No. of Data Points (n) Corresponding to Statistical Treatment of 

Spectral Shifts with F1, F2 and N

TE  

 

 

 

Table 4.The Onsager Cavity Radius and, Ground-state and Singlet 
Excited State Dipole Moments (in Debye, D) 

 
 

             
 
 
 
 

 aGround state dipole moment calculated by Gaussian software. 
 b Excited – state dipole moment calculated from Bakhshiev’s 
equation. 
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Function     m                      C     r                    n 

     F1  
     F2 

   
N

TE         
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 6765 
 2876                
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2402                    
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 0.99                   
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Radius    (Å)        g
a                     e

b e
c                e

d   

4.88           5.16                 11.27                    10.01                   8.30                         
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c Excited – state dipole moment  calculated  from Kawski-Chamma-
Viallet’s  equation. 
d Excited – state dipole moment calculated with  from equation 
(12) 
  

The ground and excited state dipole moments of 2,5-DPAPMC 
were also estimated assuming that they are parallel using equations 

(9) and (10). The estimated values are g = 3.15D and e = 9.26D. 

The difference in values of g and e compared to respective values 

from other methods (Table 4) suggest that g and e are not parallel. 

This prompted to estimate the angle between g and e according to 

equation (11) and the value is found to be 29o. It means that g and 

e are not parallel. 

 

From Table 4, it is clear that the dipole moment of 2,5-DPAPMC is 
higher in the first excited-state as compared to the ground-state. 
The dipole moment increases almost two times on excitation. This 
indicates the existence of a more relaxed excited state, due to ICT  
favoured  by the cooperative effects of the dipropyl aniline moieties 
as donors and the carbonyl group as an acceptor, and suggests that 
the present dye can serve as a good candidate component of non-
linear optical materials [1].  

4. Conclusions 

The solvent effect on spectral properties of 2,5-DPAPMC has been 
analysed using different polarity parameters. The spectral 
properties of this dye are influenced more by 
dipolarity/polarizability of solvents. However, the contributions 
from solvents HBD and HBA cannot be ignored. HBD influences 
are more than HBA. The dye has higher dipole moment in the 
excited state than in the ground state. This clearly indicates that 
dye has more relaxed excited state due to ICT and suggests that it 
can serve as good candidate component of nonlinear optical 
materials. To the present day knowledge this is the first report on 
detailed analysis of effect of solvents and estimation of dipole 
moments of 2,5-DPAPMC, and would be of great help in many 
fields.     
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