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On Estimates for Growth Rates of Unstable 

Azimuthal Disturbances in the Stability 

Problem of Swirling Flows with Radius-

Dependent Density 
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Abstract 

Estimates for the growth rate of unstable two-dimensional 
disturbances to swirling flows with variable density are 
obtained and as a consequence it is proved that the 
growth rate tends to zero as the azimuthal wave number 
tends to infinity for two classes of basic flows. 
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1. Introduction 

The stability of swirling flows has been studied extensively and for 
the vast literature on this problem one may be referred to the books 
Chandrasekhar [2], Chossat & Iooss [3] and Drazin & Reid [8]. For 
analytical studies on this problem one considers a basic flow with 
azimuthal and axial velocity components and general three-
dimensional disturbances (see for example Howard and 
Gupta[12]). However the stability of basic flows with only an 
azimuthal velocity component to infinitesimal azimuthal 
disturbances has also been studied in many works (see for example 
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[8]). In cylindrical polar coordinates  𝑟, 𝜃, 𝑧  the basic flow velocity 
is given by  0, 𝑉 𝑟 , 0  and the basic flow density is 𝜌0 𝑟  while the 
basic flow pressure 𝑃0 𝑟  is calculated from the Euler equations. 

The angular velocity Ω 𝑟 =
𝑉 𝑟 

𝑟
 . The flow domain is the annular 

region between two infinite concentric cylinders with radii 𝑅1 and 
𝑅2 where 0 < 𝑅1 < 𝑅2 < ∞. If the disturbed flow is given by 
 𝑢, 𝑉 + 𝑣, 0  and the disturbances are azimuthal disturbances, that 

is, disturbances are of the form 𝑢 = 𝑢 (𝑟)𝑒𝑖𝑚 (𝜃−𝑐𝑡) where  𝑚 is an 
integer and it is called the azimuthal wave number and 𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖  
is called the (complex) phase velocity.  The boundary conditions 
satisfied by the disturbances is 𝑢 = 0 at 𝑟 = 𝑅1 , 𝑅2 . Fung and 
Kurzweg[10] have found the linear stability equation for this 
problem and studied the instability of some specific basic flows. 
Then Fung[9] obtained some general analytical results for this 
problem. In particular Fung[9] has obtained a semicircular and 
semielliptical instability regions for basic flows satisfying the 
condition 𝑎𝑏(𝐷𝜌0) ≥ 0 where, 𝑎 = 𝑚𝑖𝑛Ω 𝑟 , 𝑏 = 𝑚𝑎𝑥Ω(𝑟), and the 

differential operator 𝐷 is defined by 𝐷 =
𝑑

𝑑𝑟
. Moreover, Fung[9] has 

defined the Richardson number 𝐽 by 𝐽 =
Ω

2
(𝐷𝜌0)

𝜌0𝑟 𝐷Ω 2 and has found that 

a necessary condition for instability is that the minimum of the 
Richardson number is less than one quarter. Recently this problem 
has been studied in Dattu and Subbiah[5] where an improved 
instability region given by a generalized semiellipse theorem has 
been found for arbitrary angular velocity profiles. This improved 
instability region has also been used to find an estimate for the 
growth rate of unstable disturbances. Moreover, Dattu and 
Subbiah[5] have found an estimate for the growth rate of an 
arbitrary unstable disturbances given by  

𝑚2𝑐𝑖
2 ≤  

1

4
− 𝐽𝑚  𝐷Ω 2

𝑚𝑎𝑥 𝑅2
2 ,  

where, 𝐽𝑚 is the minimum Richardson number and the subscript 
𝑚𝑎𝑥 stands for maximum over [𝑅1 ,𝑅2]. 

The two-dimensional instability of the Rankine vortex with 
variable density has been studied recently in Dixit and 
Ramagovindarajan[7]. Since 𝐷Ω = 0 in this case they have studied 
the instability with respect to the Atwood number rather than the 
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Richardson number. Also the instability of inviscid incompressible 
swirling flows with variable density with respect to two-
dimensional disturbances has been studied asymptotically and 
numerically  in Di Pierro and Abid[6]. For slowly varying velocity 
profiles Di Pierro and Abid [6] has studied the growth rate of an 
unstable disturbance in the limit  𝑚 ≫ 1 and found that their 
asymptotic result agrees with their numerical result. It may be 
noted here that the instability of swirling flows of homogeneous 
fluid has been studied in Le Dizes[13] with respect to azimuthal 
disturbances where a nonlinear critical layer analysis has been 
developed. 

In the present paper we consider the stability problem of swirling 
flows with variable density of inviscid incompressible fluids 
confined between two infinite concentric cylinders at 𝑟 = 𝑅1and 
𝑟 = 𝑅2 where 0 < 𝑅1 < 𝑅2 < ∞ with respect to azimuthal 
disturbances. From Dattu and Subbiah[5]’s estimate for growth rate 
stated earlier it is found that the imaginary part of the complex 
phase speed 𝑐𝑖  tends to zero as the wave number 𝑚 → ∞ for flows 
satisfying the condition of boundedness  of  𝐷Ω . In the present 
paper we have found a different estimate for the growth rate and 
from this estimate we prove that the growth rate 𝑚𝑐𝑖 → 0 as the 
azimuthal wave number 𝑚 → ∞ for two classes of basic flows. The 
first class of flows consists of basic flow variables satisfying the 
condition of boundedness of 𝜆2  𝐷 𝜌0𝑍  2 where 𝑍 = 𝑟𝐷Ω + 2Ω is 

the vorticity of the basic flow, 𝜆2 =  
Ω

2 𝐷𝜌0 

𝐷 𝜌0𝑍  Ω−Ω𝑠   
− 1 

2

+ 1 and Ω𝑠 

is the value of Ω at the point where 𝐷 𝜌0𝑍  becomes zero. An 
example of a basic flow satisfying this condition is also given here. 
For homogeneous flows this result has been proved in Subbiah[16] 
and it may be remarked here that, in this case, a sharper result, 
namely, the existence of a critical wave number 𝑚𝑐  such that 
𝑚𝑐𝑖 = 0 whenever 𝑚 ≥ 𝑚𝑐  has been proved in Dattu and 
Subbiah[4] for a class of basic  flows satisfying the condition of 

boundedness of the quantity 
 𝐷𝑍 𝑟

(Ω−Ω𝑠)
. The second class of basic flows 

consists of flows with weak stratification, that is, flows satisfying 

the condition Ω
2 𝐷𝜌0  ≪ 1. It may be remarked that the 

asymptotic results of Di Pierro and Abid[6] for the growth rate 
does not give this result of the growth rate tending to zero as the 
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azimuthal wave number tending to infinity. But it should be noted 
that the basic flows considered in Di Pierro and Abid[6] are 
different from those considered in our analysis.  In Di Pierro and 
Abid[6] the basic angular velocity is slowly varying while such a 
condition is not imposed in our analysis. 

2. Eigenvalue Problem 

The linear stability problem of inviscid incompressible but density 
stratified swirling flows between two infinite concentric co-axial 
cylinders at 𝑟 = 𝑅1 , 𝑅2 where 0 < 𝑅1 < 𝑅2 < ∞ with respect to 

azimuthal disturbances of the form (function of 𝑟)𝑒𝑖𝑚 (𝜃−𝑐𝑡) is given 
by an eigen value problem consisting of the second order ordinary 
differential equation of Fung and Kurzweg[10] 

𝜌0  𝐷∗𝐷 −
𝑚2

𝑟2  𝜙 +  𝐷𝜌0  𝐷𝜙 +  
Ω2 𝐷𝜌0 

𝑟 Ω−𝑐 2 −
𝐷 𝜌0𝑍 

𝑟 Ω−𝑐 
 𝜙 = 0,          (2.1) 

Where the operator 𝐷∗ is defined to be  𝐷∗ = 𝐷 +
1

𝑟
, and boundary 

conditions 

                                          𝜙 = 0 at 𝑟 = 𝑅1 , 𝑅2 .                                     (2.2) 

Here the function 𝜙(𝑟) is defined by 𝜙 𝑟 =
𝑖𝑟𝑢(𝑟)

𝑚
  where 

𝑢 𝑟 𝑒𝑖𝑚 (𝜃−𝑐𝑡) is the axial disturbance velocity. In this equation the 
azimuthal wave number `𝑚′ appears as 𝑚2 and so we can take 
𝑚 > 0 without loss of generality. 

3. Estimate for Growth Rate of Unstable Disturbances 

In this section we obtain an estimate for the growth rate of an 
arbitrary unstable disturbance and we deduce from this estimate 
that the growth rate of an unstable mode tends to zero as the 
azimuthal wave number tends to infinity for two classes of basic 
flows. 

Theorem.3.1. If 𝑟 = 𝑟𝑠 with 𝑅1 < 𝑟𝑠 < 𝑅2is the point at which 𝐷(𝜌0𝑍) 
vanishes and 𝜆2 𝐷 𝜌0𝑍  2 is bounded in [𝑅1 , 𝑅2] then a necessary 
condition for the existence of non-trivial solution  𝜙, 𝑐, 𝑚2  with 
𝑐𝑖 > 0 and 𝑐𝑟 = Ω𝑠 = Ω(𝑟𝑠) is that 
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𝑚2𝑐𝑖 ≤
𝑅2

𝜌0𝑚𝑖𝑛
max

 𝑅1 ,𝑅2 
{𝜆|𝐷 𝜌0𝑍 |} 

                    where 𝜆 =   
Ω2 𝐷𝜌0 

𝐷 𝜌0𝑍  Ω−Ω𝑠 
− 1 

2

+ 1 

1

2 

 

Proof: The above equation (2.1) can be rewritten as  

                 𝐷∗ 𝜌0𝐷𝜙 −
𝜌0𝑚2𝜙

𝑟2 +  
Ω2 𝐷𝜌0 

𝑟 Ω−c 2 −
𝐷 𝜌0𝑍 

𝑟 Ω−𝑐 
 𝜙 = 0.              (3.1) 

Multiplying the above equation by 𝑟𝜙∗(where * stands for complex 

conjugate) and integrating over  𝑅1 , 𝑅2  we have  

 𝐷∗ 𝜌0𝐷𝜙 𝑟𝜙∗ 𝑑𝑟 −
𝑅2

𝑅1
 

𝜌0𝑚2

𝑟
 𝜙 2 𝑑𝑟 +

𝑅2

𝑅1
  

Ω2 𝐷𝜌0 

 Ω−c 2 −
𝑅2

𝑅1

𝐷 𝜌0𝑍 

 Ω−𝑐 
  𝜙 2𝑑𝑟 = 0 . 

Using integration by parts formula and the boundary conditions (2.2) we 

have  

 𝜌0   𝐷𝜙 2 +
𝑚2

𝑟2
 𝜙 2 𝑟𝑑𝑟

𝑅2

𝑅1

                     

  +   
𝐷 𝜌0𝑍 

 Ω−𝑐 
−

Ω2 𝐷𝜌0 

 Ω−c 2  
𝑅2

𝑅1
 𝜙 2𝑑𝑟 = 0.                (3.2) 

Real part of the above equation gives 

 𝜌0   𝐷𝜙 2 +
𝑚2

𝑟2
 𝜙 2 𝑟𝑑𝑟 +

𝑅2

𝑅1
  

𝐷 𝜌0𝑍  Ω−𝑐𝑟 

 Ω−𝑐 2 −
𝑅2

𝑅1

                                                            
 Ω2 𝐷𝜌0   Ω−𝑐𝑟 2−𝑐𝑖

2 

 Ω−𝑐 4
  𝜙 2𝑑𝑟 = 0.  (3.3) 

For 𝑐𝑖 > 0 the imaginary part of the equation (3.2) gives  

                                 
𝐷 𝜌0𝑍 

 Ω−𝑐 2 −
2Ω2 𝐷𝜌0  Ω−𝑐𝑟 

 Ω−𝑐 4   𝜙 2𝑑𝑟 = 0.
𝑅2

𝑅1
             (3.4) 

Multiplying equation (3.1) by 
𝑟3𝐷∗(𝜌0𝐷𝜙∗)

𝜌0
 and integrating over  𝑅1 , 𝑅2  we 

have 

 
𝑟3|𝐷∗ 𝜌0𝐷𝜙∗   2

𝜌0
 dr 

𝑅2

𝑅1

– 𝑚2  𝑟𝜙𝐷∗ 𝜌0𝐷𝜙∗ 𝑑𝑟 +
𝑅2

𝑅1

 

                                  
Ω2   𝐷𝜌0 

𝑟 Ω−𝑐 2 −
𝐷 𝜌0𝑍 

𝑟 Ω−𝑐 
 

𝑟3𝜙𝐷∗ 𝜌0𝐷𝜙∗ 

𝜌0
𝑑𝑟 = 0.

𝑅2

𝑅1
     (3.5) 

Taking complex conjugate of both sides of equation (3.1) gives 
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                             𝐷∗ 𝜌0𝐷𝜙∗ =
𝜌0𝑚2𝜙∗

𝑟2 +  
𝐷 𝜌0𝑍 

𝑟 Ω−𝑐∗ 
−

Ω2 𝐷𝜌0 

r Ω−c∗ 2 𝜙∗.        (3.6) 

Substituting (3.6) in (3.5), using integration by parts formula and the 

boundary conditions (2.2), we get the following integral relation: 

  
𝑟3|𝐷∗ 𝜌0𝐷𝜙∗   2

𝜌0
 dr 

𝑅2

𝑅1
+ 𝑚2  𝜌0 𝐷𝜙 2𝑟𝑑𝑟 + 𝑚2   

Ω2   𝐷𝜌0 

𝑟 Ω−𝑐 2 −
𝑅2

𝑅1

𝑅2

𝑅1

𝐷 𝜌0𝑍 

𝑟 Ω−𝑐 
  𝜙 2𝑟𝑑𝑟 −   

Ω2   𝐷𝜌0 

𝑟 Ω−𝑐 2 −
𝐷 𝜌0𝑍 

𝑟 Ω−𝑐 
 
2

𝑅2

𝑅1

 𝜙 2𝑟3

𝜌0
𝑑𝑟 = 0.                     (3.7) 

Real part of the above equation (3.7) gives  

 
𝑟3|𝐷∗ 𝜌0𝐷𝜙∗   2

𝜌0
 dr 

𝑅2

𝑅1

+ 𝑚2  𝜌0 𝐷𝜙 2𝑟𝑑𝑟
𝑅2

𝑅1

+ 

𝑚2   
Ω2   𝐷𝜌0   Ω−𝑐𝑟 2−𝑐𝑖

2 

𝑟 Ω−𝑐 4 −
𝐷 𝜌0𝑍  Ω−𝑐𝑟 

𝑟 Ω−𝑐 2   𝜙 2𝑟𝑑𝑟 −   
Ω2   𝐷𝜌0 

𝑟 Ω−𝑐 2 −
𝑅2

𝑅1

𝑅2

𝑅1

𝐷 𝜌0𝑍 

𝑟 Ω−𝑐 
 
2  𝜙 2𝑟3

𝜌0
𝑑𝑟 = 0,                                                                             (3.8) 

while for 𝑐𝑖 > 0,the imaginary part  of equation (3.7) gives  

                     
2Ω2 𝐷𝜌0  Ω−𝑐𝑟 

 Ω−𝑐 4 −
𝐷 𝜌0𝑍 

 Ω−𝑐 2 𝑚2 𝜙 2𝑑𝑟 = 0.
𝑅2

𝑅1
                      (3.9) 

Multiplying equation (3.3) by 𝑚2 and adding the resultant equation 
to equation (3.8), we have the relation 

 
𝑟3|𝐷∗ 𝜌0𝐷𝜙   2

𝜌0
 dr + 2𝑚2  𝜌0 𝐷𝜙 2𝑟𝑑𝑟 + 𝑚4  

𝜌0 𝜙 2

𝑟
𝑑𝑟

𝑅2

𝑅1

𝑅2

𝑅1

𝑅2

𝑅1
  

                             −   
Ω2 𝐷𝜌0 

𝑟 Ω−𝑐 2 −
𝐷 𝜌0𝑍 

𝑟 Ω−𝑐 
 

2  𝜙 2𝑟3

𝜌0
𝑑𝑟 = 0.

𝑅2

𝑅1
                     (3.10) 

This is rewritten as 

 
𝑟3|𝐷∗ 𝜌0𝐷𝜙   2

𝜌0
 dr + 2𝑚2  𝜌0 𝐷𝜙 2𝑟𝑑𝑟 + 𝑚4  

𝜌0 𝜙 2

𝑟
𝑑𝑟

𝑅2

𝑅1

𝑅2

𝑅1

𝑅2

𝑅1
        

−  
 𝐷 𝜌0𝑍  

2

 Ω−𝑐 2  
Ω2 𝐷𝜌0 

𝐷 𝜌0𝑍  Ω−𝑐 
− 1 

2  𝜙 2𝑟

𝜌0
𝑑𝑟 = 0.

𝑅2

𝑅1
   

Since  Ω − 𝑐 2 ≥ 𝑐𝑖
2, the above equation gives, 

 
𝑟3|𝐷∗ 𝜌0𝐷𝜙   2

𝜌0
 dr + 2𝑚2  𝜌0 𝐷𝜙 2𝑟𝑑𝑟 + 𝑚4  

𝜌0 𝜙 2

𝑟
𝑑𝑟 

𝑅2

𝑅1

𝑅2

𝑅1

𝑅2

𝑅1
  

                          −  
 𝐷 𝜌0𝑍  

2

𝑐𝑖
2  

Ω2 𝐷𝜌0 

𝐷 𝜌0𝑍  Ω−𝑐 
− 1 

2  𝜙 2𝑟

𝜌0
𝑑𝑟 ≤ 0;

𝑅2

𝑅1
  



Halle Dattu  et al     On Estimates for Growth Rates of Unstable Azimuthal 

7 
 

i.e,  
𝑟3|𝐷∗ 𝜌0𝐷𝜙   2

𝜌0
 dr + 2𝑚2  𝜌0 𝐷𝜙 2𝑟𝑑𝑟 + 𝑚4  

𝜌0 𝜙 2

𝑟
𝑑𝑟 

𝑅2

𝑅1

𝑅2

𝑅1

𝑅2

𝑅1
 

−  
 𝐷 𝜌0𝑍  

2

𝑐𝑖
2 Ω−𝑐 2  

 Ω2 𝐷𝜌0  
2

 

 𝐷 𝜌0𝑍  
2 +  Ω − 𝑐𝑟 

2 + 𝑐𝑖
2 −

𝑅2

𝑅1

                                                                       
2Ω2 𝐷𝜌0  Ω−𝑐𝑟 

𝐷 𝜌0𝑍 
  𝜙 2𝑟

𝜌0
𝑑𝑟 ≤ 0.  

This can be rewritten as  

  
𝑟3|𝐷∗ 𝜌0𝐷𝜙   2

𝜌0
 dr + 2𝑚2  𝜌0 𝐷𝜙 2𝑟𝑑𝑟 + 𝑚4  

𝜌0 𝜙 2

𝑟
𝑑𝑟 

𝑅2

𝑅1

𝑅2

𝑅1

𝑅2

𝑅1

 

−  
 𝐷 𝜌0𝑍  

2

𝑐𝑖
2 Ω−𝑐 2   Ω − 𝑐𝑟 

2  
Ω2 𝐷𝜌0 

𝐷 𝜌0𝑍  Ω−𝑐𝑟 
− 1 

2

+ 𝑐𝑖
2 

 𝜙 2𝑟

𝜌0
𝑑𝑟 ≤ 0.

𝑅2

𝑅1
  

Using the facts that  Ω − 𝑐𝑟 
2 ≤  Ω − 𝑐 2 and 𝑐𝑖

2 ≤  Ω − 𝑐 2 in the 
above inequality we have, 

   
𝑟3|𝐷∗ 𝜌0𝐷𝜙   2

𝜌0
 dr + 2𝑚2  𝜌0 𝐷𝜙 2𝑟𝑑𝑟 + 𝑚4  

𝜌0 𝜙 2

𝑟
𝑑𝑟 

𝑅2

𝑅1

𝑅2

𝑅1

𝑅2

𝑅1
 

−  
 𝐷 𝜌0𝑍  

2

𝑐𝑖
2   

Ω2 𝐷𝜌0 

𝐷 𝜌0𝑍  Ω−𝑐𝑟 
− 1 

2

+ 1 
 𝜙 2𝑟

𝜌0
𝑑𝑟 ≤ 0.

𝑅2

𝑅1
  

But, since 𝑐𝑟 = Ω𝑠 and 
Ω2(𝐷𝜌0)

𝐷 𝜌0𝑍  Ω−Ω𝑠 
 is bounded in [𝑅1 , 𝑅2] by 

hypothesis of the theorem, we have from the above inequality 

  
𝑟2 𝐷∗ 𝜌0𝐷𝜙  2

𝜌0
+ 2𝑚2𝜌0  𝐷𝜙 2  𝑟𝑑𝑟 +

𝑅2

𝑅1
  

                                                 
(𝑚 4

𝑟2 𝜌 0
2𝑐𝑖

2−𝜆2 𝐷 𝜌 0𝑍  
2

𝑐𝑖
2

 𝜙 2

𝜌0
𝑟 𝑑𝑟 ≤ 0,

𝑅2

𝑅1
           (3.11) 

where                            𝜆2 =  
Ω2 𝐷𝜌0 

𝐷 𝜌0𝑍  Ω−Ω𝑠 
− 1 

2

+ 1.                        (3.12) 

From inequality (3.11) it follows that 

𝑚4𝜌0
2𝑐𝑖

2

𝑟2
≤ 𝜆2 𝐷 𝜌0𝑍  

2
, 

atleast once in the flow domain and as a consequence we have 

𝑚4𝜌0𝑚𝑖𝑛
2 𝑐𝑖

2

𝑅2
2 ≤  max

 𝑅1 ,𝑅2 
𝜆 𝐷 𝜌0𝑍   

2
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i.e,                          𝑚2𝑐𝑖 ≤
𝑅2

𝜌0𝑚𝑖𝑛
max 𝑅1 ,𝑅2 {𝜆|𝐷 𝜌0𝑍 |}                   (3.13) 

So the theorem is proved. 

As a corollary to the above theorem we have the following result. 

Theorem.3.2. For basic flows satisfying the condition of boundedness of 

the quantity 𝜆2 𝐷 𝜌0𝑍  2 , we have 

                                      lim𝑚→∞ 𝑚𝑐𝑖 = 0.                                               (3.14) 

Now we shall present an example of basic flow that satisfies the condition 

of Theorem 3.1. 

Example. The angular velocity profile considered here is a particular case 

of the Shukhman[15] profile; namely, the one with 

                              Ω 𝑟 = tanh(
log 𝑟

𝑑
)                                                 (3.15) 

where 0 < 𝑑 < 1 is a constant and the density profile considered here is 

given by  

                                  𝜌0 𝑟 = 𝑒− tanh 3(
log (𝑟−𝑟𝑠+1)

𝑑
) 

                                   (3.16)   

where 𝑟𝑠 is the point where 𝐷(𝜌0𝑍) is zero. 

We shall check that  𝜆2 𝐷 𝜌0𝑍  
2
 is bounded for this flow. 

It is trivial to see that    𝐷Ω =
1

𝑟𝑑
sech2  

log 𝑟

𝑑
 , 

and that 𝑍 = 𝑟𝐷Ω + 2Ω =
sech 2 

log 𝑟

𝑑
 

𝑑
+ 2 tanh  

log 𝑟

𝑑
 . 

It is seen that 𝐷 𝜌0𝑍 = 0 at 𝑟 = 𝑟𝑠 where 𝑑 − tanh  
log 𝑟

𝑑
 = 0, i.e,∃ 𝑥∗ 

such that tanh( 𝑥∗) = 𝑑 where 𝑥∗ =
log 𝑟𝑠

𝑑
, that is 𝑟𝑠 = 𝑒𝑥∗𝑑 . 

To check that  𝜆2 𝐷 𝜌0𝑍  
2
 is bounded, it is seen that 

𝜆2 𝐷 𝜌0𝑍  
2

= { 
Ω2 𝐷𝜌0 

𝐷 𝜌0𝑍  Ω − Ω𝑠 
− 1 

2

+ 1} 𝐷 𝜌0𝑍  
2
 

                                     = {2 +
Ω4 𝐷𝜌0 2

 𝐷 𝜌0𝑍  
2
 Ω−Ω𝑠 

2
−

2Ω2 𝐷𝜌0 

𝐷 𝜌0𝑍  Ω−Ω𝑠 
} 𝐷 𝜌0𝑍  

2
  

𝑖. 𝑒, 𝜆2 𝐷 𝜌0𝑍  
2

 =
2 𝐷 𝜌0𝑍  

4
 Ω−Ω𝑠 

2+Ω4 𝐷𝜌0 2−2Ω2 𝐷𝜌0 𝐷 𝜌0𝑍 (Ω−Ω𝑠)

 Ω−Ω𝑠 
2      

  (3.17) 
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The numerator is bounded in [𝑅1 , 𝑅2] by continuity. 
Unboundedness will come only if the denominator is zero. It is 
seen that the denominator is zero of order 2 at 𝑟 = 𝑟𝑠 and nowhere 
else. But it is found that the numerator is also zero at 𝑟 = 𝑟𝑠 of order 

two or more. Therefore 𝜆2 𝐷 𝜌0𝑍  
2
 is bounded for this example of 

basic flow and so this example of basic flow satisfies the conditions 
of Theorem 3.1. 

In the above theorems the density stratification is arbitrary but the 
angular velocity Ω(𝑟) and the density 𝜌0(𝑟) together satisfies the 
conditions of Theorem 3.1. However, if we consider basic flows 
with weak density stratification then we can prove the result of 
theorem 3.2. for arbitrary angular velocity profiles. 

Theorem.3.3. If (𝜙, 𝑐, 𝑚2) is a non-trivial solution of equation (2.1) 
and (2.2) with 𝑐𝑖 > 0 and  Ω2 𝐷𝜌0  ≪ 1 then 𝑚𝑐𝑖 → 0 as 𝑚 → ∞. 

Proof: Now consider, 

 
Ω2 𝐷𝜌0 

𝐷 𝜌0𝑍  Ω−𝑐 
− 1 

2

=  
Ω2 𝐷𝜌0 

𝐷 𝜌0𝑍  Ω−𝑐 
− 1 (

Ω2 𝐷𝜌0 

𝐷 𝜌0𝑍  Ω−𝑐∗ 
− 1)  

                                =
 Ω2 𝐷𝜌0  

2

 𝐷 𝜌0𝑍  
2
 Ω−𝑐 2

+ 1 −
2Ω2 𝐷𝜌0 (Ω−𝑐𝑟 )

𝐷 𝜌0𝑍  Ω−𝑐 2 .                   (3.18) 

Under the weak stratification condition the first term on the right 
hand side is neglected and using the resultant relation in equation 
(3.8) we have the following integral relation: 

  
𝑟3|𝐷∗ 𝜌0𝐷𝜙   2

𝜌0
 dr + 2𝑚2  𝜌0 𝐷𝜙 2𝑟𝑑𝑟 + 𝑚4  

𝜌0 𝜙 2

𝑟
𝑑𝑟 

𝑅2

𝑅1

𝑅2

𝑅1

𝑅2

𝑅1
 

+  
2Ω2𝐷 𝜌0𝑍  Ω−𝑐𝑟 (𝐷𝜌0)

𝜌0 Ω−𝑐 4
 𝜙 2𝑟𝑑𝑟 −  

 𝐷 𝜌0𝑍  
2

𝜌0 Ω−𝑐 2
 𝜙 2𝑟 𝑑𝑟 = 0.

𝑅2

𝑅1

𝑅2

𝑅1
     (3.19) 

Since  Ω − 𝑐 2 ≥ 𝑐𝑖
2  the above equation becomes, 

 
𝑟3|𝐷∗ 𝜌0𝐷𝜙   2

𝜌0
 dr + 2𝑚2  𝜌0 𝐷𝜙 2𝑟𝑑𝑟 + 𝑚4  

𝜌0 𝜙 2

𝑟
𝑑𝑟 

𝑅2

𝑅1

𝑅2

𝑅1

𝑅2

𝑅1
+  

 
2Ω2𝐷 𝜌0𝑍  Ω−𝑐𝑟 𝑐𝑖(𝐷𝜌0)

𝜌0 Ω−𝑐 4𝑐𝑖
 𝜙 2𝑟𝑑𝑟 −  

 𝐷 𝜌0𝑍  
2

𝜌0𝑐𝑖
2  𝜙 2𝑟 𝑑𝑟 ≤ 0.

𝑅2

𝑅1

𝑅2

𝑅1
      (3.20) 

Furthermore, since  Ω − 𝑐𝑟 
2 + 𝑐𝑖

2 ≥ 2 Ω − 𝑐𝑟 𝑐𝑖  and 𝐷 𝜌0𝑍 ≥
−|𝐷 𝜌0𝑍 | we derive from equation (3.20), that, 
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𝑟3|𝐷∗ 𝜌0𝐷𝜙   2

𝜌0
 dr + 2𝑚2  𝜌0 𝐷𝜙 2𝑟𝑑𝑟 + 𝑚4  

𝜌0 𝜙 2

𝑟
𝑑𝑟 

𝑅2

𝑅1

𝑅2

𝑅1

𝑅2

𝑅1
  

−  
Ω2|𝐷 𝜌0𝑍 |(𝐷𝜌0)

𝜌0 Ω−𝑐 2𝑐𝑖
 𝜙 2𝑟𝑑𝑟 −  

 𝐷 𝜌0𝑍  
2

𝜌0𝑐𝑖
2  𝜙 2𝑟 𝑑𝑟 ≤ 0.

𝑅2

𝑅1

𝑅2

𝑅1
              (3.21) 

Using the fact that  Ω − 𝑐 2 ≥ 𝑐𝑖
2 the above inequality can be rewritten as  

                                  
𝑟3|𝐷∗ 𝜌0𝐷𝜙   2

𝜌0
 dr + 2𝑚2  𝜌0 𝐷𝜙 2𝑟𝑑𝑟

𝑅2

𝑅1
+

𝑅2

𝑅1
  

                   
𝑚2𝜌0

2

𝑟2 −
 Ω2 𝐷 𝜌0𝑍   𝐷𝜌0  

𝑐𝑖
3 −

 𝐷 𝜌0𝑍  
2
𝑐𝑖

𝑐𝑖
3  

 𝜙 2

𝜌0
𝑟𝑑𝑟 ≤ 0.

𝑅2

𝑅1
     (3.22) 

The first two terms are non negative and so the integrand of the third term 

should be negative and since 𝑐𝑖 ≤
(𝑏−𝑎)

2
 by the semi circle theorem of 

Fung[9] we have the following inequality: 

𝑚4𝜌0𝑚𝑖𝑛
2

𝑅2
2 −

 Ω2 D ρ0Z   Dρ0  
max

𝑐𝑖
3 −

  D ρ0Z  
2
 

max

(b−a)
2

𝑐𝑖
3 ≤ 0;  

i.e, 
𝜌0𝑚𝑖𝑛

2 𝑚3𝑐𝑖
3

𝑅2
2 ≤

 Ω2 D ρ0Z   Dρ0  
max

𝑚
+

  D ρ0Z  
2
 

max

(b−a )
2

𝑚
;  

i.e,𝑚3𝑐𝑖
3 ≤  

 Ω2 D ρ0Z   Dρ0  
max

𝑚
+

  D ρ0Z  
2
 

max

 b −a 
2

𝑚
 

𝑅2
2

𝜌0𝑚𝑖𝑛
2 ;              (3.23) 

This implies that 𝑚𝑐𝑖 → 0 as 𝑚 → ∞,and the theorem is proved. 

Remark.3.4. In the context of the stability problem of density 
stratified inviscid shear flows it was first conjectured by 
Howard[11] that the growth rate of an unstable disturbance should 
tend to zero as the wave number tends to infinity. This Howard’s 
conjecture has been proved for a class of basic flows called Garcia 
type flows in Banerjee et al[1] and for shear flows with weak 
density stratification in Shandil and Jagjit Singh[14]. So we may 
regard our theorems 3.2 and 3.3 as statement and proof of 
Howard’s conjecture for two classes of swirling flows with variable 
density. 

Concluding Remarks 

In this paper we have considered the linear stability of inviscid 
incompressible but density stratified swirling flows to two-
dimensional disturbances. We have found estimates for growth 
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rate of unstable disturbances and as a consequence we have proved 
that the growth rate tends to zero as the azimuthal wave number 
tends infinity for two classes of basic flows. From the asymptotic 
result of Di Pierro and Abid[6] for the growth rate one cannot 
conclude that the growth rate tends to zero as the azimuthal wave 
number tends to infinity, but it should be noted here that the basic 
flow considered in their analysis should satisfy the condition of 
slow variation of the angular velocity and this is not supposed in 
our analysis. 
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