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Flow of Conducting Fluid on solid Core 

Surrounded by Porous Cylindrical Region in 

Presence of Transverse Magnetic Field 

Jayalakshmamma D V*, Dinesh PA†, Sankar M‡ and 

Chandrashekhar D V§ 

Abstract 

The steady flow of an electrically conducting, viscous and 
incompressible fluid flow through / past a solid core 
surrounded by cylindrical porous medium is considered 
in the presence of the transverse magnetic field. The 
modified Brinkman and Stokes equations are used to 
describe the fluid flow in porous and non-porous regions 
respectively.  The exact solution is obtained in terms of 
modified Bessel’s function.  The matching boundary 
conditions are used at the interface of the two regions 
along with the no-slip condition on the surface of the 
solid core.  Further, uniform velocity away from the fluid 
surface is considered.  The effect of magnetic field and 
porous parameter on the fluid flow is presented for both 
porous and     non-porous regions.  From the obtained 
result it is noticed that increase in magnetic field strength, 
the flow is suppressed and fluid flow through porous 
region is observed.  Further, increase in porous 
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parameter, offered a resistance to the fluid flow through 
porous medium thereby fluid flow past porous region is 
noticed.   

Keywords:  Incompressible, Brinkman equation, Stokes equation, 
matching boundary, porous parameter. 

1.  Introduction 

The flows of the fluids through / past a porous media are of 
principle interest because of its natural occurrence and its 
importance in industrial, geophysical and bio-medical applications. 
In chemical industries it has been used to achieve an effective 
mixing process, filtration, purification process, oil recovery. In 
nuclear industries, porous medium is used for effective insulation 
and for emergency cooling of nuclear reactors. To study 
underground water  

resources, seepage of water in river beds, we need to known the 
concept of fluid flow through porous media. Also, it helps in bio-
medical problem to understand the transport process of lungs and 
kidneys.   

In the literature, studies are found on the fluid flow past a sphere 
or cylinder in porous media using Darcy’s or Brinkman equation 
under different boundary conditions. Beaver’s and Joseph [1], 
Saffman [2] Raja Sekhar and Amaranath [3], they have used Darcy’s 
equation to describe the flow field. The problem of Stokes flow past 
porous bodies have been studied by Masliyah et al [4],  Qin and 
Kaloni [5], Barman[6], Pop and Ingham [7],  Anindita Bhattacharya 
and Raja Sekhar [8], Pop et al [9] using Brinkman model in porous 
region to describe the motion.  

The study of hydrodynamic flows in presence of magnetic field has 
attracted many authors due to vast applications in astrophysical, 
geophysical and industrial fields. Many practical problems need a 
mechanism to control the motion of the fluid past solid bodies with 
Magnetohydrodynamics (MHD) effects. The study of 
magnetohydrodynamic flows of electrically conducting fluids in 
electric and magnetic fields is of considerable interest in modern 
metallurgical and metal working processes.  This has led to 
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considerable interest in the study of boundary layer flows subjected 
to an externally applied magnetic field.    

Anjali Devi and Raghavachar [10] studied the horizontal flow of a 
vertically stratified, electrically conducting fluid past a non 
conducting sphere in the presence of uniform magnetic field for 
non-diffusive medium. Kyrlidis et al [11] presented the study of 
conducting fluid past axi-symmetric bodies in the presence of 
magnetic field in the limit of small inertial and magnetic Reynolds 
numbers. The objective was to control the particle settling in 
metallic systems. Chandran et al [12] have been analyzed the effect 
of magnetic field on the flow heat transfer past a continuously 
moving porous plate in a stationary fluid and using similarity 
transformation method, the governing boundary layer equations 
are reduced to a set of non-linear ordinary differential equations. 
Numerical solutions for the velocity and temperature functions 
have been found by shooting method using Runge-Kutta 
algorithm.  The steady, viscous, electrically conducting fluid flow 
around a circular cylinder in the presence of magnetic field applied 
parallel to the main flow was investigated by Raghava Rao and 
Sekhar [13]. Finite difference method was used to solve the non-
linear Navier-Stokes equation. Jayalakshmamma et al [14] 
presented a creeping flow past a composite sphere in presence of 
magnetic field. matching boundary conditions are applied at the 
interface of the fluid and porous media. Pal and Talukdar [15] 
analyzed an investigation on the unsteady flow of a laminar two-
dimensional oscillatory flow of an incompressible electrically 
conducting viscous fluid between two non-conducting parallel 
plane surfaces in the presence of suction / injection. An analytical 
solution was obtained by adopting regular perturbation technique.  

The influence of magnetic field to control the flow during the 
relative motion of a body or fluid is the main objective of this 
article. Therefore in this paper, the creeping flow of a steady, 
incompressible, viscous, electrically conducting fluid flow past a 
solid cylinder embedded in a cylindrical porous medium is 
presented in the presence of transverse magnetic field.  The 
analytical method is given to find an exact solution for the 
considered fluid flow. The matching boundary conditions for 
velocity and stress across the interface is considered. Further, it is 
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assumed that the induced magnetic field is negligible compared to 
the applied magnetic field.   

2.  Mathematical formulation 

The steady flow of viscous, incompressible and conducting fluid 
through and past a porous cylindrical region of radius b comprising 
a solid cylindrical core of radius  a, is investigated in the presence 
of transverse magnetic field. It is assumed that the induced 
magnetic field is negligible, as the magnetic Reynolds number is 
small.  Also the flow domain has been divided into two regions as 
non-porous (fluid region) and porous region. The constitutive 
equations which describe the flow of a conducting fluid in non-
porous region under the assumption made are modified Stokes’s 
equation with the equation of continuity and are given by: 

Equation of continuity 

 01 


q ,                                                                   (1) 

and modified Stokes equation 











 HHqqp eh 1

2

1

2

1  ,                                                      (2) 

where  1111
,, wvuq 



 is the velocity in the non-porous region,   is 

the viscosity of the fluid, h  is the magnetic permeability, e  is the 

electrical conductivity, which is very small so that the induced 

magnetic field is negligible, 


H  is the uniform magnetic field and 

1p  is the hydrostatic pressure of the fluid region. Here equation (2) 

is said to be modified Stokes equation as it consist of Lorentz force 
due to applied Magnetic field, along with the viscous term on the 
right hand side of the equation. 

The flow in the porous region bra   is governed by the 
modified Brinkman equation along with equation of continuity, 
given by: 
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where,  2222
,, wvuq 



 is the velocity in the porous region,   is 

the Brinkman viscosity, 2p  the hydrostatic pressure of the porous 

region and k  the permeability of the porous region. 

In this study, the cylindrical polar co-ordinates are used. Thus, for 
an axi-symmetric, two dimensional flow in a cylindrical co-ordinate 

system  zr ,,  with the origin at the center of the cylinder and the 

axis 0  is chosen along the direction of the uniform velocity 
u  

far from the non-porous region. Also due to axi-symmetry we 

have 0




z
. The flow characteristics of the problem are described 

by equations (1) to (4) can be analyzed in terms of non-dimensional 
parameters pertaining to the flow processes. In view of this, the 
following dimensionless similarity variables are introduced: 
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where 0H  is the applied constant magnetic field. 

After non-dimensionalising the governing equations (1) to (4) using 
the non-dimensional variables as defined in equation (5) for 
cylindrical polar co-ordinate system in fluid region, we get: 
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here  0,, 11 vu  represents the velocity of the fluid in the fluid region, 

1p  the pressure in fluid region. M  Hartmann number (as defined 

above). Similarly, the non-dimensionalised governing equation for 
the porous region takes the form: 
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here  0,, 22 vu  components of velocity in normal and tangential 

direction in porous medium, 2p  the static pressure in porous 

region and 222  MS  in which 
k

a
  is the porous parameter 

and k  is the permeability of the fluid. 

As the flow is axi-symmetric and two dimensional, the stream 

function   ,ri (where 2,1i  correspondingly for fluid and 

porous regions) is introduce, which satisfies the equation of 
continuity in cylindrical polar co-ordinate system for both non-
porous and porous regions respectively  
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here iu  is the normal component of velocity and iv  is the 

tangential velocity. By eliminating the pressure term from 
equations (6), and (7) of non-porous region and equations (9), and 
(10) of porous region by cross differentiation we get a fourth order 
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linear partial differential equation in terms of corresponding stream 
function as: 

  

  rbM ,01

22

1

4  ,                                                      (13) 
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
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


rrrr
 is Laplacian operator in 

cylindrical polar co-ordinate system. 

In the present problem, physically realistic and mathematically 
consistent boundary conditions are used. These are the no-slip 
condition on the solid cylindrical core, continuity of velocities and 
stresses across the interface of two regions and uniform velocity far 
away from the fluid region. No-slip conditions on the surface of the 
solid cylindrical core are: 

   20,0,2 au ,                                                                  (15) 

    20,0,2 av .                                                                   (16) 

The interfacial conditions, continuity of normal and tangential 
velocity components, continuity of normal and tangential stress 
components at the interface of the porous and fluid region are 
given by: 

      20,,, 12  bubu ,                                                         (17) 

      20,,, 12  bvbv ,                                                         (18) 

         20,,, 12  bb rr ,                                               (19) 

       20,,, 12  bb rrrr ,                                                  (20) 

where   ir  and  irr  are the dimensionless tangential and 

normal components of stress tensors, written in cylindrical co-
ordinate as: 
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The continuity of the normal stress at the interface of the two 
regions from the boundary condition (20), shows that the 
continuity of pressure across the interface, since the viscosity of the 
fluid is equal to the Brinkman viscosity   . Therefore, equation 

(20) reduces to: 

     20,,, 12  bpbp .                                                       (23) 

Also, the uniform velocity far away from the fluid cylindrical 
region is given by: 

   sin~,1 rr   as  r .                                                             (24) 

3.  Method of solution 

The boundary condition of uniform velocity far away from the 
porous cylindrical region leads to find the solution for the fourth 
order partial differential equations of equations (13) and (14) by 
similarity solution method as  

     sin, rfr ii  .                                                                            (25) 

Substituting equation (25) in equations (13) and (14) in respective 
regions, we obtain the ordinary differential equation of order four 

in  rf i  as 
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The corresponding boundary conditions are: 

No-slip condition at the surface of the solid cylinder is given by 
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  02 af ,                                                                                              (27) 
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The continuity of the velocity and stresses at the interface of the 
porous and fluid region is given by  

   bfbf 12  ,                                                                                       (29) 
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Further, the uniform velocity far away from the fluid region is 
reduces to: 

  rrf ~1
  as r .                                                                           (33)  

The forth order ordinary differential equation (26), is converted 
into second order by taking the substitution 
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The equation (26) reduces to  
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Equation (35) represents the modified Bessel’s differential equation 
of order one, whose general solution is of the form  

      rJIDrJKCrg iiiii 11  ,                                                          (36) 

where iC  and iD  are the arbitrary constants, and substituting 

equation (36) in equation (34) we get  

         rJIDrJKCrf
r

rf
r

rf iiiiiii 112

11






.                          (37) 

Here, equation (37) is an ordinary second order differential 
equation with variable co-efficient which can be solved by the 
method of variation of parameter and the obtained complete 
solution is  

      rJIDrJKCrB
r

A
rf iiiii

i
i 11  .                                      38) 

Therefore, the solutions of equation (26) for non-porous and porous 
medium are given by: 
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where 2221111 ,,,,,, CBADCBA  and 2D  are arbitrary constants. In 

the fluid region as r ,  then   rMI1 .  Therefore the 

solution is valid for 01 D  and also due to the boundary condition 

for uniform velocity far away from the medium, from equation (33) 

we get 11 B .  Thus equation (39) reduces to: 
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r

A
rf 11

1
1 .                                       (41) 

Hence the stream function in both the regions takes the form  
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The arbitrary constants present in the equations (42) and (43) are 
evaluated using the boundary conditions and are given in the 
appendix. Further, the expression for normal and tangential 
component of velocities for both porous and non-porous regions 
can be obtained in terms of stream function from equation (12). 

4.  Results and discussion 

The viscous flow of steady  incompressible electrically conducting 
fluid past a solid cylinder embedded in a cylindrical porous 
medium has been investigated in the presence of uniform magnetic 
field, applied in the transverse direction of the fluid motion. The  
modified Stokes and Brinkman equations are used to illustrate the 
flow behavior in fluid and porous regions respectively. The 
induced magnetic field is assumed to be negligible, since the 
conductivity and magnetic Reynolds number are very small. 
Analytical solution is obtained by similarity solution method. In 
this method the partial differential equation of the physical 
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configuration are transformed to ordinary differential equations. 
These ordinary  differential equations are converted into modified 
Bessel’s equations using a special transformation, whose solution is 
obtained in terms of modified Bessel function of order one. The 
continuity of velocity, tangential and  normal stress are used as the 
interface boundary conditions between fluid and porous  regions. 
Also, the   no-slip condition at the surface of the solid cylinder and 
uniform velocity away from the porous cylinder are considered. 
Finally, the expression for stream function is obtained as a function 
of  r  and dimensionless parameters.  
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Fig 1:  Streamlines for fixed 001.0  and different value of M (a) 1.0M        

 (b) 2M  (c) 5M  (d) 10M   

 

The effect of both magnetic field M  and porous parameter   on 
the flow patterns are discussed through the streamlines.  First, the 
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effect of magnetic field for negligible value of   is studied. For 

small magnetic field strength 1.0M , it is noticed that the 
streamlines are free and are away from the solid cylinder. By 
increasing the magnetic field strength to 2M , the streamlines 
are moved towards the cylindrical core and more amount of fluid 
moves inside the porous region. Further increase in Hartmann 

number  10,5M , the streamlines are meandering near the core 

and the observations are shown in Figs. 1 (a) to (d).   

 

 

 

 

 

 

 

         a                                                            b 

 

 

 

 

 

 

                            c                                                               d 

Fig 2: Streamlines for fixed 5  and different value of M   (a) 1.0M        (b) 2M     

(c) 5M        (d) 10M       

For an increase in 5  by fixing Hartmann number  001.0M  

at negligible value, from Fig. 2(a), it is noticed that the fluid is 
flowing past the porous cylinder rather than passing through it. 
This can be attributed to the lower permeability of the porous 
medium. For this , when the magnetic field strength is increased 
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the fluid starts to move inside the porous region. As a result the 
streamlines are moving closer to the solid surface of a cylinder and 
the same is depicted in Figs. 2 (b) to (d). 

On the other hand, for negligible Hartmann number  001.0M  

when the porous parameter is increased, it is found that the 
behavior of the fluid flow is opposite. For small porous parameter 

 1  value, free flow is observed in porous cylindrical region. 

However, as the value of   is increased for the same Hartmann 
number, the flow behavior has been changed completely. As the 
value of porous parameter increases, the fluid flow past the porous 
cylinder, this is similar to the flow of viscous fluid and is shown in 
Figs. 3 (a) to (d).    
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                                       c                                                                                          d 

Fig 3: Streamlines for fixed 001.0M  and different value of  ,   (a) 1        (b) 2               

(c) 3             (d) 5  
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5. Conclusions 

The present study projects on certain practical applications such as 
metallergy and metal processing, lubrication and in nuclear 
reactors, where an additional force such as magnetic field is 
applied to control the fluid flow. In the view of these applications, 
this papers  presents the analytical solution for steady flow of an 
incompressible viscous and electrically conducting fluid past a 
solid cylinder placed in a cylindrical porous medium, in the 
presence of transverse magnetic field. The influence of Hartman 
number and porous parameter are discussed on the streamline 
patterns. From the graph, the meandering of streamlines near the 
surface of the solid cylinder is noticed for the increase in magnetic 
field strength with fixed or negligible porous parameter.  This 
shows that the fluid flow is effectively controlled by the magnetic 
field as a result more amount of fluid flows through the porous 
region / on the surface of the solid core.   
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