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Variable Viscosity Effects on Penetrative 

Convection in a Fluid Layer 

Gangadharaiah, Y H* 

 

Abstract 

The effect of variable viscosity on the onset of penetrative 
convection  simulated via internal heating in a fluid layer. 
The upper surface of a fluid layer is assumed to be 
deformably free and dependence of viscosity is assumed 
to be exponential. The resulting eigen value problem is 
solved using a regular perturbation technique with wave 
number a as a perturbation parameter. The viscosity 
parameter, surface deformation and the presence of 
internal heat source play a decisive role on the stability 
characteristics of the system.  

 
Keywords: Variable viscosity: Internal heat source 

Nomenclature 

a  horizontal wave number, 
2 2l m  

A  ratio of heat capacities 

D  differential operator d dz  

d  thickness of the fluid layer 

g


 acceleration due to gravity 

k  permeability 

,l m  wave number in x and y-directions respectively 

M  Marangoni number  0T uT T d   
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R  Rayleigh number in the fluid layer   3

0 /ug T T d    

Pr  Prandtl number for fluid layer, v   
Ns       heat source strength   2

0/ 2 uq d T T   

p  pressure 

T  temperature 

0T  temperature at the interface 

V


 velocity  vector  (u, v, w) 

W  amplitude  of perturbed vertical velocity 

Greek symbols 
 

2  Laplacian operator     2 2 2 2 2 2 2x y z         

  thermal diffusivity 

  amplitude of perturbed temperature 

  fluid viscosity 

0  fluid density 

  temperature dependent surface tension 
v  kinematic viscosity 0 

 

1. Introduction 

 

The mechanism of internal heating in a flowing fluid is relevant to 
the thermal processing of liquid foods through ohmic heating, 
where the internal heat generation serves for the 
pasteurization/sterilization of the food [1]. Other important 
applications of flows with internal heat generation are relative to 
nuclear reactors, as well as to the geophysics of the earth’s mantle. 
In both cases, the internal heating is due to the radioactive decay. 
For nuclear reactors, processes of natural convection with internal 
heating are extremely important in the analysis of severe accident 
conditions. As pointed out by [2], flows with volumetric heating 
are relevant for the physics of the atmosphere, in connection with 
the absorption of solar radiation. Due to the wide range of 
industrial and geophysical applications, extensive literature has 
been recently produced on this subject; see e.g. (Carr 2004, Carr and 



Gangadharaiah, Y  H                                                 Variable Viscosity Effects   

53 
 

Putter 2003, Hill 2004, Straughan 2008, Straughan and Walker 1996, 
Tse and Chasnov 1998, and Zhang and Schubert 2002). 

In this paper, the stationary Benard-Marangoni instability in a 
variable viscosity fluid layer with internal heat generation will be 
studied using linear stability analysis. The upper surface of a 
fluidlayer is assumed to be deformably free and boundaries are 
considered to be insulated to temperature perturbations. A regular 
perturbation technique with wave number a  as a perturbation 
parameter is used to solve the eigen value problem in a closed 
form. The influences of temperature-dependent viscosity and 
internal heating on the stability limit will be analyzed by 
developing explicit solution. 

2. Mathematical Formulation 

We consider penetrative convection via internal heating in a system 
consisting of an infinite horizontal fluid layer of thickness d and the 
z-axis pointing vertically upwards opposing the direction of 
gravity. The temperatures of the lower and upper boundaries are 

taken to be uniform and equal to lT and  uT respectively, with 

l uT T . The upper free surface of fluid layer is free of deformities 

with its position being   , , .z d x y t   

  

 

 

 

 

 

Fig. 1 Physical configuration 
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The governing equations for the fluid layer are: 

0V 


                 (1) 

     0 0 01 2 . . . TV
V V p g T T V V

t
   
                    


               (2) 

  2T
V T k T q

t


    




.                                       (3) 

where 

 0 0exp A T T                                                          (4) 

and
0  is the dynamic viscosity corresponding to a temperature 

equal to the mean of temperature at the boundaries. 

In the above equations, ( , , )V u v w


 is the velocity vector, p is the 

pressure, T is the temperature, q  is the heat source in the fluid 

layer,  is the thermal diffusivity,  is the thermal expansion 

coefficient and 0  is the reference fluid density.  

The basic state is quiescent and is of the form  

     0, , , , 0,0, , ,b bu v w p T W p z T z                 (5) 

The basic steady state is assumed to be quiescent and temperature 
distributions are found to be  

 
 0 2

0
2 2

u

b

T T q d q
T z T z z

d  

  
     

   

             (6) 

Where 0T is the interface temperature. In order to investigate the 

stability of the basic solution, infinitesimal disturbances are 
introduced in the form 

, , , ,b b b bV V T T T p p p                  
 

     (7) 

where the primed quantities are the perturbations and assumed to 
be small. Eq.(7)is substituted in Eqs. (1)-( 3) and linearized in the 
usual manner. The pressure term is eliminated from Eq. (2) by 
taking curl twice on these two equations and only the vertical 
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component is retained. The variables are then nondimensionalized 

using 2, / , /d d d  and 0 uT T  as the units of length, time, 

velocity, and temperature in the fluid layer and the non-
dimensional disturbance equations are now given by 

 
2

2 4 2 2 2 2

2

1
2 2 h h

f w f
w f w w w R T

pr t z z z

   
          

   

 


                   

 (8) 

 2 1 (1 2 )T w Ns z
t

 
    

 
                                                  (9) 

where   3

0 /uR g T T d     is the Rayleigh number,

 2

0/ 2 uNs q d T T  is the dimensionless heat source strength 

and 2 2 2 2/h z      is the Laplacian operator with 

2 2 2 2 2/ / .h x y      The function f representing the 

temperature dependence of viscosity, is defined as 

max

min

1
exp , .

2
f B z B





   
      

    

                                     (10) 

The appropriate boundary conditions are 

 , 1 0
T

w Bi T Ns
t z

 
        

1at z           (11) 

 
2

2 2

2
1h hf w M T Ns

z

 
          

 1at z           (12) 

 
2

2 2 2

02

1
3 0

Pr
h h h

w
f Cr B

t z z

    
         

    

 1at z           (13)

  

Since the principle of exchange instabilities holds for holds good 
even for the present configuration as well.  Hence, the time 
derivatives will be dropped conveniently from Eqs. (8)and(9).Then 
performing a normal mode expansion of the dependent variables 
as 
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       , , expw T W z z i lx my          
                      (14) 

and substituting them in Eqs. (8) and (9) (with 0t   ), we obtain 

the following ordinary differential equations  

     
2

2 2 2 2 2 2 2 22f D a W Df D a DW D f D a Ra        
    

(15) 

   2 2 1 1 2D a W Ns z         
                                   (16) 

The  linearized boundary conditions are: 

 1 0W D Bi Ns Z       1at z                               (17) 

   2 2 2 1 0 at 1f D a W Ma Ns Z z       
                     (18)

   

   2 2 2 2

03 at 1f Cr D a DW B a a Z z                          (19) 

0,W  0 and 0DW D  at 0.z                                     (20) 

3. Method of Solution 

Since the critical wave number is exceedingly small for the 
assumed temperature boundary conditions (Nield and Bejan 2006) 
the eigen value problem is solved using a regular perturbation 
technique with wave number a as a perturbation parameter. 
Accordingly, the dependent variables are expanded in powers of 

2a in the form 

     2

0

, ,
N

i

i i

i

W a W


  
                                                                  (21) 

Substitution of Eq.  21  into Eqs.    15 16 and the boundary 

conditions    17 20  

4 3 2 2

0 0 02 0f D W Df D W D f D W                (22) 

2

0 0( )D f z W                 (23) 
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where 

 ( ) 1 1 2f z Ns z                  (24) 

The boundary conditions (17)-(20)  become  

0 0 0 0 0W DW D at z                 (25) 

2

0 0(1) 0 1f D W D at z                (26) 

Then solutions to above equations are 

0 00 and 1W   
              

(27) 

First- order equations    15 16   become 

 4 3 2 2

1 1 12 [ 1 2 ]D W B D W B D W R Exp B z               (28) 

2

1 11 ( ) .D f z W                 (29) 

The boundary conditions    17 20
 
become 

1 1 0 0W DW at z                (30) 

 2 2

0(1) 1 0 1f D W Ma Ns Z at z      
           (31) 

3 0
1 0(1) 0

B
f D W Z

Cr
   1at z              (32) 

The general solution of (28)  is 

 
2

1 1 2 3 4 2
[ 1 2 ]

2

Bz Bz z
W R C C z C e C ze Exp B z

B

  
       

 
      (33) 

Where 
1 2 3 4, , andC C C C  are constants and they have to 

determined using the appropriate boundary conditions. 

2

1 2 2 2

7

2 1 2

B B

B B B

e e B
C

B e e B e

 

  

  
   

   
,  

2

2 2 2 2

2 2

2 1

B B B

B B

e e B Be
C

B e B e

    
  
   
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2

3 2 2 2

1

2 1 2

B B

B B B

e e B
C

B e e B e

  
  

   
,     

2 2

4 2 2 2

2 2 2
.

2 2 1

B B

B B B

e e B B
C

B e e B e

   
  

   
 

The differential Equation (29) involving 2

1D   provide the 

solvability requirement which is given by 

1

1

0

( ) 1f z W dz                (34) 

The expressions for 1W  is back substituted into Eq. (34) and 

integrated to yield an relation for the critical Rayleigh number and 
Marangoni number is obtained 

1 2 3 4

1
R M

 
   

                  (35) 

where 

1 
2

2 2 2 2 2 2

1 2 2

2 1 2 2 2 1

B B B B B

B B B B B B

e e B e e B Be

B e e B e B e e B e

  

     

       
    

        

,   

   2

0 0 0

1

(B -Cr M 1+ )  + (2 B - 3 CrM 1+  + 6B  

Be B

Ns Ns

  
   

    2 2 2 2

3 3

1
2 2 2 2 2 2 .

2

B B B BB e e Ns B e e
B

        
 

 

 

2 2

4 2 2

0 0

2 1

1    2 B - 3 CrM 1+  + 6B  

B B

B B

e B B e B

e B e Ns





   
  

 
 

In the limit absence of internal heating (i.e., 0Ns  ) and constant 
viscosity (i.e., 0B ),we recover the know result.  

1
320 48

R M
                                     (36) 
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4. Results and Discussion 

The effect of internal heat generation on the criterion for the onset 
of Benard-Marangoni instability in a variable viscosity with upper 
surface of a fluid layer is deformably free is investigated 
theoretically. The resulting eigenvalue problem is solved using a 
regular perturbation technique with wave number a as a 
perturbation parameter.  

In considering pure Benard convection(i.e 0M  ),  the critical 

Rayleigh number cR
 
is a function of the viscosity parameter B and 

the internal heat source strength  .Ns  Figure 2 shows the variation 

of critical Rayleigh number cR   with the internal heat source 

strength Ns for different values of B , it is observed that in the 
absence of variable viscosity ( 0B  ) the  critical Rayleigh number 

cR   increases initially,  with Ns  reaches maximum and then 

decreases with further increase in  the value of .Ns  As a result of 
Fig. 2 some unusual behaviours are observed namely, (i) increasing 
variable viscosity parameter shows some destabilizing effect and 
(ii) increasing internal heat source strength causes stabilizing effect 
initially. Figure 3 depicts the perturbed vertical velocity eigen 

functions W  for different values of internal heat source strength  
Ns  for 0M  and 1.B   It is noted that the convection occurs 
maximum at the upper part of fluid layer as increasing   in heat 
source strength. 
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Fig.3Perturbed velocity eigen functions W  for different values of Ns with 1B   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Critical Marangoni number versus Ns   for different values of  B for     
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Fig.5 Critical Marangoni number versus Cr   for different values of  .Ns  

In the absence of thermal buoyancy (i.e 0R  ) we merely consider 
the Marangoni convective instability at the upper free surface. 

Figure 4 shows the variation of critical Marangoni number cM   

with the internal heat source strength  Ns  for different values of B

, it is observed that in the absence of variable viscosity ( 0B  ) the  

critical Marangoni number cM   increases initially,  with Ns  

reaches maximum and then decreases with further increase in  the 
value of .Ns  As a result of Fig.4 some unusual behaviours are 
observed namely, (i) increasing variable viscosity parameter shows 
some stabilizing effect and (ii) increasing internal heat source 
strength causes stabilizing effect initially. 

In Fig.5 the critical Marangoni number cM is plotted against the 

Crispation number Cr for different values of Ns . it is observed that 

in the absence of variable viscosity and Ns    the  critical Marangoni 

number cM decreases as Cr increases while in the presence of 

variable viscosity critical Marangoni number cM   increases 

initially,  with Cr and Ns  reaches maximum and then decreases 
with further increase in  the value of Ns    reaches maximum and 
then decreases with further increase in  the value of Cr.  It is 

observed that the critical Marangoni number cM decreases with an 

cM  

Cr  

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

30

60

90

120

150

 

 

 

5, 2Ns B   

2, 2Ns B   

1, 2Ns B   

0, 0Ns B   



Mapana J Sci, 13, 3(2014)                                                              ISSN 0975-3303 

62 
 

increase of the Crispation number for 410Cr   and thus making 

system more unstable. The reason being that an increase in Cr  is to 
increase the deflection of the upper free surface, which in turn, 
promotes instability much faster. 

The effect of the Bond number 0B  on the critical Marangoni 

number cM different values of Ns  with 2B   is shown in Fig.6.  It 

is observed that increase in the value of 0B   makes the system more 

stable. The reason for this may be attributed to the fact that an 
increase in the gravity effect, which keep the free surface flat 
against the effect of surface tension, which forms a meniscus on the 

free surface, and hence an increase in 0B   makes the system more 

stable. 
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Fig.7Critical Marangoni number versus Cr   for different values of  cR for   2 .B Ns   
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The plot of   the critical Marangoni number cM verses different 

values of Cr  with   2and 2B Ns   is shown in Fig.7.  It is 

observed that the Cricipation number Cr decreases as cR increase; 

the instability of the system is dominated by surface tension. 
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A plot of 
cM  as a function of cR  is shown in Fig.8 for a several 

values of Cr  for 2and 2.B Ns   We notice from figure that 

when 0cM  , the curve trend toward 538.cR   This shows that 

the thermal buoyancy dominates the system over the effect of 

surface tension. On other hand when 410 ,Cr  which increases the 

inverse effect of surface tension, the system will be easily 
destabilised because of thermal buoyancy become surface tension. 
It is evident from figure that the effect of thermal buoyancy 
increases so that the system is under   the domination of the 
thermal mode. 

5 Conclusions 

The onset of penetrative convection via internal heating in fluid 
layer with variable viscosity   has been studied theoretically and 
following result are obtained. 

a. Critical Rayleigh number cR   increases initially,  with 

simultaneous effects of  andNs B   and reaches maximum 

and then decreases with further increase in  the value of 

and .Ns B  It is noted that the appearance of newly formed 

sub layer, which first occurs at the maximum critical 

Rayleigh number cR   with associated viscosity parameter, 

continues to manifest itself after then, becoming dominant 
at the critical state. As B  is further increased, the viscously 
suppressive effects of main fluid layer above shorten the 

depth of sub layer and cR  then decreases with .B  

b. Increasing viscosity parameter on Marangoni convection 
shows the stabilizing effect initially. 

c. Increasing in the value of Bond number and decreasing the 
Cricipation number  makes the system more stable.  
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