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DARCY-BENARD CONVECTION USING
A NON-FOURIER THERMAL MODEL

P G. Siddheshwar*

ABSTRACT

In the paper the effect of replacing the classical Fourier thermal model
by the non-classical non-Fourier thermal model on Darcy-Bénard
convection in a fluid-saturated densely-packed porous medium is studied
and, in particular, how the Nusself numbers of the solid and fluid phases
are affected by the adopfion of such a model is considered. A weighted-
average Nusselt number is olso defined and analyzed to study the
overall heat transfer in the case of sfeady finite-amplitude convection
which is omenable to analytical treatment. Sub-crifical instabilify is
ruled out in mono-diffusive convection but the inclusion of a second-
diffusing component or rotation is shown fo facilifate its manifesiation.

1. Introduction

Darcy-Bénard convection in a porous medium is a phenomenon relevant to many
fields in geophysical, environmental and technological applications. The state-of-
art on the subject has been well documented in the books of Nield and Bejan[1],
Vofai[2] and Ingham and Pop [3]. Most studies concerning the problem have
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assumed that the convecting liquid and the porous medium are everywhere in
local thermal equilibrium (LTE). Nield and Bejan{1] have advocated the need to
have a two-equotion model to study convection in porous media. In the two-field
or two-equation model the energy equations of the fluid and solid phases are
coupled by means of terms which account for the heat lost to or gained from the
other phase. Quintard et al.[4] describes this as the simplest form that reflects the
concept of two macroscopic media. Thus the inter-phase heat transfer is modeled
by a heat fransfer coefficient, h, whose value depends on the nature of the porous
matrix and the saturating fluid. In a review article Vofai and Amiri[5] discuss possible
values of this coefficient which has been the subject of infense experimental interest,
Large values of h correspond to a rapid transfer of heat between the phases, and
therefore such values are taken to correspond to LTE. Conversely, small values of A
give rise to relatively strong non-equilibrium effects. The two-field model is now
being used extensively, especially in the realm of forced convective transport, and
the works of Nield and Kuznetsov(6], Calmidi and Mahajanf7] and Carbonell and
Whitaker{8] discuss typical situations which require the use of the model. Sparse
literature available on the Darcy-Bénard convection problem using a two-field
model (see [?] and [10}) concentrate on the onset problem. A global nonlinear
stability of the problem has been performed by Straughan(11]. Very recently, Sheu[12)
has solved the Lorenz model for chaotic convection in a porous medium using a
LTNE model. The aim of the present paper is fo present the classical Dorcy-Bénard
problem in a new perspective by replacing the clossical Fourier thermal model(FTM)
with the non-classical non-Fourier thermal model(NFTM) and seeing its effect on
aspects associated with the nonlinear realm of convection, especially on the Nusselt
numbers of the fluid and solid phases, and also on the weighted-average Nusselt
number. Specifically the following is aimed at in the paper:

i) Present the Darcy-Bénard convection problem in o new perspective and
ascertain mathematically the reason behind the delay in the onset of convection
inthe NFTM compared to the FTM.

i} Verify if the neglection of the local acceleration term is justified in the study of
convection using the NFTM. In other words, check whether the principle of
exchange of stabilities (PES) is valid or not when the local acceleration term is
present. '

iii}  Delineate the separate contributions of the solid and fluid phases to the overall
heat transport in the porous medium.

iv) Investigate the possibility of subcritical motions {both steady and oscillatory) in
each of mono-diffusive, double-diffusive and rotating systems.



2. Mathematical Formulation

Consider a horizontal isotropic porous layer of infinite extent occupied by a
Boussinesq fluid, confined between stress-free, isothermal boundaries at y=0ond
y= d, at which the fluid temperatures are T,=T, + AT and T, =T, respectively
(see figure 1). The medium is assumed to have low-porosity and hence the fluid
flow is governed by Darcy model. We consider Darcy-Bénard convection in this
loyer of depth, d. The basic state is assumed fo be quiescent with the conduction
temperature profiles of both fluid and solid phases having the non-dimensional

u=v=0,T,=T,

Porous medium d

u=v=0,T, =T, +AT

Figure 1. Definition sketch of the horizontal porous layer and
boundary conditions.

distribution 1 - y. The governing perturbation equations for the problem in non-
dimensional form are (Siddheshwar [13]):
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where
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D 2 fk fdQ {(Vadasz number.or Prandtl-Darcy number),
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The boundary conditions for solving (1)-(3) are

V=0=8, =0 ony=0,
V=0=0,=0 ony=I. “

It suffices to use just Eq. (2) with Eq.{3) to determine the onset Darcy-Rayleigh
number. An equation for the solid phases’ temperature is, however, required to
determine the heat transport in the solid phase.

The great advantage of the NFTM in the present form is the ease it provides in
switching over to the FTM through a unique limiting procedure H — <. In the



event of the Rees numbers not being used in the formulation then the switch over
could be effected in two different ways{see Banu and Rees{]). Further, Rees numbers
provide symmetry of representation as is evident from their expression.

The equotions have been rendered non-dimensional using d for spatial coordinates,

felpc); + (1-¢€)pc), Jo? . sk, +(1-ek , .
ek + (=), for time, BT for velocity and (T,-];)for

temperoture of both the fluid and solid phases. In the above equations U and V are
the fluid velocity components in the horizontal and vertical directions, respectively,
x and y are the corresponding Cartesian coordinates and #is time. The following
are the other fluid and medium properties: K is the permeability, £ the fluid viscosity,
P the density, ¢ the specific heat, 8 the coefficient of thermal expansion, & the
porosity and k the thermal conductivity. The subscripts s and f denote the quantities
of the solid and fluid phases, respectively. The fime derivative in Eq.{2) hos been
retained to verify if the adoption of NFTM leads to the principle of exchange of
stabilities being violated. Instinct drives one to think of oscillatory convection being
possible in Darcy-Bénard convection with NFTM due to the presence of a second
order derivative in time.

Equations (1)-(3), subject to the boundary conditions (4), admit @ minimal Fourier
solution in the form: '
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where k is the horizontal wave number, 4, =”§2"‘f 4=T+5 ;?Cg and,
8%secé Rk?

4, =1+H'(?+fan§) = 54, and §2 = 72 + k2. Equation (5} is a roll-solution

which is assumed with the knowledge thot rolls remain the favoured pattern for all
combination of values of the Rees numbers (see Rees and Pop [14)).

Substitution of (5) info {2) and (3} yields the following generalized Vadasz-Lorenz
model for nonlinear convection in porous media:
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One can eosily verify that Eqgs. (6)-(8) reduce to the Vadasz-Lorenz model of Darcy-
Bénard convection using FTM, reported by Vadasz[15], in the limit H — o, A
Lorenz model for anisotropic porous media convection was derived and analysed
by Kakimoto et al.[16] Various aspects of nonlinear convection in porous media
was reviewed by Rudraiah et al.[17]. The expression for the onset Rayleigh number
is presented next followed by aspects of the nonlinear realm.

Assuming the amplitudes A and B to have the form &7 , the linear version of Egs.
{6} and (7) yields the Darcy-Rayleigh number expression to determine the onset of
convection and is given by:
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Since ris a real quantity, eithere = 0or N =0 {with @ #0). The former and latter
conditions refer respectively to stationary and oscillatory convections. The latter
condition yields an expression for @ in the form:

(1+Cpy)-Cn i: +VA—%}

o' =A, - -,
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and this is not positive for any combination of the parameter values. The inference
thus is that the principle of exchange of stabilities is valid in the Darcy-Bénard
problem even in the case when the thermal model is non-Fourier and the local
acceleration is non-zero in the Darcy law of Eq. (2). This is in concurrence with the
findings of Banu and Rees[9].

The stationary Rayleigh number for the onset of convection is given by r=1. Reverting
back to unscaled quantities using the definitions given earlier, this condition translotes
to:

e 8[, _Hising ]
T T T H cosE [T+ tané (13)

The form of equation (13) is intentional to indicate explicitly the contribution of
NFTM to the onset of convection. It is obvious from the equation that

H'sin& I
RNFTM=RFTM [ - ,
[+62+H cosé]la—_tan?, (14)

where the superscﬁpfs NFTM and FTM on R denote the acronyms used earlier. The
critical wave number k. that determines the smallest R, = R(1+tan &}, viz., Ry,
that signals the onset of convection, is the smallest positive root of the equation

( ‘)’ + (u’ +2H cos&) (k’)2
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~ 1 (n* +H' cosE) fn? +H {cost +sin g)=0.



In the limit H' — oo, it can easily be seen from Egs. (14) and {15} respectively that
RY™ —s R*™ and k. —rx {16)

where k. is the critical wave number. Further, it is pretty obvious that RV 5 g™
in general.

The non-linear system of autonomous differential equations (6)-(8) is not analytically
tractable for the general time-dependent variables and will have to be solved using
a numerical procedure. The steady finite-amplitude system is, however, amenable

to analytical treatment and one may obtain B8 and C in terms of A, and their
expressions are recorded below:

_ _ A4+ 4, |
B=A D=2 17

where A is given by

A? = 4 A+ 4
7N | . (18)

In the succeeding section we delineate the individual contributions of the fluid and
solid phases to the overall heat transport by steady convection in a porous medium.,

Heat Transport

In the study of convection problems the determination of heat transport across the
fluid layer is important. This is because the onset of convection as Rayleigh number
is increased is more readily detected by its effect on the heat transfer. [n the basic

state, the heat transfer is by conduction alone.

The fluid Nusselt number, Nu,, is given by

2n/k
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The term 1 —y in the integrand is the dimensionless temperature distribution of
conduction state prevalent before convection sets in. The second term represents
the convective contribution to heat transport. Substitution of Eq. (5¢) in Eq. (19),
and completion of integration yields

ANU, 1+ 2[1:_’] D, (20)

We now obtain the expression of the Nusselt number for steady convection by the
substitution of the expression of D from Eqs.(17) into Eq.{20). This yields Ny, in the
form:

Nu,=|+2[l—-:-] | 21)
C e

The solid Nusselt number, Nu_, is given by

k 2x/k .
[5‘"‘ I(I—Y'Fd})ydx:l
Ny, = T r=

s 2x/k 4 '
[5‘;- f (r-y),de .
. 0 =0

where @ is the temperature of the solid phase that enjoys exactly the same form as
Eq.(3) for @and the minimal representation for ¢ is the same as that in Eq. {5) for
& but with the amplitude of the linear and nonlinear modes now being C and £
respectively. Substitution of the minimal representation of @ in Eq. (22) and
expressing E in ferms of A yields the following form for Nu, in the case of steady
conveciion:

H cosé

Nu, )= —1 €956
(No, =1) 4n® +H cos&

(Nu-1). 23)

It is obvious from the above equation that Nu, < Ny, with the equality being true
when H* is very large.,

A discussion on the overall heat transfer in the porous medium can be made by
analyzing o weighted-average Nusselt number Nu, involving Nu,and Nu_. So we
define Nu_ as:



2

T .
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Ny, = NorcosE+Nu,sing | | I+teng [I—lj. (24)
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It is obvious from the above equation that
NUF™ ¢ Ny™ , . (25)

where NuM™ is essentially Nu, and Nut™ = Nu; = Nu_. In the succeeding
section we look into the possibility of sub-critical instability.

Sub-critical instability

To explore the possibility of sub-critical mofions, we expand A, B, D, @ and rin a
series involving & that gets identified with the amplitude of finite-amplitude motions
in the course of the analysis. '

A=5A|+33A3+ ...........
B=sBI+s3B3+ .......... .

D=62Dy+6%D ... (2¢)
W= 0]0 +€2ﬁ)2 + 830)3 L LT,

,-=r0+5-2r2+g3r3+ .......... .

Since the principle of exchange of stabilities is valid, we note that @, =0,r =1
4
é

that in turn implies Ry = ;H . Substituting equation (26) in equations (6)-(8),

and equating coefficients ol? various bowers of £, we get
48] =foo] 7, | - e
tfas85]T=}doy. oy + . T, (28)
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and so on. In the above equations, L has the following definition:

1 -1
Lz{AHATrO '—AQJ: 29)

and the parantheses {...) on the right hand side of equation {28) are expressions
involving the parameters of the problem. The condition for the existence of non-
trivial solution to equation (27) requires L to be singular. Equation (28) clearly
implies that @, =0andr, =()0=1_). Since r,=1, due to the principle of
exchange of stabilities being valid, ry is also zero. One may proceed to higher
order corrections but in the problem these make no further contribution fo the
frequency and Rayleigh number. In other words there is no possibility of sub-critical
motions in convection in densely-packed porous media using the non-Fourier
thermal model. This is true of traveling wave instability as well.

Results and Discussion

1. Darcy-Bénard convection problem is seen in a new perspective using the
‘hyperbolic-type’ of heat equation and the simplicity of such a usage. The
reason behind the delay in the onset of convection in the NFTM model,
compared to the FTM model, is the ‘hyperbolic-type’ of equation (with bi-
harmonic correction) enjoyed by the temperatures of the solid and fluid phases.

2. The neglection of the local acceleration term is justified in the study of convection
using the NFTM model. PES is valid when the local acceleration ferm is present
and the NFTM is adopted.

3. The separate contributions of the solid and fluid phases to the overall heat
transport in the porous medium is delineated:

4. Sub-critical motions are shown not fo manifest in mono-diffusive convection
in porous media with both NFTM ond FTM models. However, the presence of
a second diffusing component gives rise o not only the possibility of oscillatory
convection but also sub-critical motions. This is frue of rotating systems as
well. The onset thermal Rayleigh number and the frequency of oscillations in
the case of the double-diffusive convecion are respectively given by:

[+ 5°C )+ (64, - w?C,, Jtee]

_ jm2
RO‘T =J8 a lCDN62 + A.Les + NLG(H' SZCKV )J’
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8,Colee(o? +(8,8, — 8,Colec —5,5,) 0> 55, =0

and J = 1 refers to the porous medium heated by below where the highest
concentration is imposed and J = -1fo heating from the top where the
highest concentration is imposed (Mojtabi and Charrier- Mojtabi[18]). The
quantities Le, ¢ and N are the lewis number, porosity and the buoyancy-
ratio respectively. The &,’s are functions of the parameters of the problem
and are not recorded here. The finite amplitude Rayleigh number, R, is given

by:

K*Le?(A + N)R? +25% Jk2Le(N — A)(1- Atle) R, + 8%(1— Ae) =0,

where 4= p) and the other guantities have their earlier meaning. It was

found that oscillatory and sub-critcal stationary-wave instabilities are possible

in this case. In the limit of H' — oo, the results of Mojtabi and Charrier-
Moitabi[18] are recovered.
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