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Abstract 

The paper presents the mathematical formulation which 
describes the dispersion of solute in a laminar flow in a 
sparsely packed porous medium. The effect of interphase 
mass transfer on dispersion in a unidirectional flow 
through a horizontally extent of infinite porous channel is 
examined using the generalized dispersion model of 
Sankarasubramanian and Gill. The model brings into 
focus three important coefficients namely the exchange 
coefficient, the convection coefficient and the dispersion 
coefficient. The time-dependent dispersion coefficient 
and mean concentration distribution are computed and 
results are represented graphically. The problem finds 
many applications in waste water management, in 
chromatography and in biomechanical problems. 
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1. Introduction 

Dispersion of solute in porous media is seen in many real life 
problems such as ground water pollution and chromatography. 
Many of the problems associated with the transport of pollutants 
involve interphase mass transfer. Taylor [8] was the first to study 
the dispersion of passive solute in a Hagen-Poiseuille flow and the 
limitations of the classical paper by Taylor [8] was overcome Aris 
[1] and Aris [1] also studied the dispersion of solute using a 
statistical approach. The study of dispersion by Taylor [8 ] and Aris 
[1] was applied to only long times and this limitation was 
overcome by Gill and Sankarasubramanian [4] and Barton [2 ]. Gill 
[3] gave a note on dispersion of transient dispersion problems. 
Later Gill and Sankarasubramanian [4] presented the elegant all-
time approaches to study dispersion of passive solute in 
Newtonian fluid flows. Exact solutions are obtained for the effect of 
interphase mass transfer on dispersion in unidirectional flow 
through a horizontally extended porous channel using generalized 
model of Sankarasubramanian and Gill [5]. Siddeshwar and 
Manjunath ([6], [7]) have studied the convective diffusion process 
in a Non–Isothermal Plane-Poiseuille flow. The model brings into 
focus three coefficients namely exchange coefficient, convective 
coefficient and dispersion coefficient.  The effect of wall reaction 
rate parameter and its effect on these three coefficients are also 
studied.     

2. Mathematical Formulation  

The physical configuration considered in this problem is as shown 
in figure. Consider an infinite horizontally extended sparsely 
packed porous medium bounded by solvent-impermeable walls of 
width 2h. The solute undergoes first order heterogeneous chemical 
reaction with the bounding walls of the channel. The flow is 
assumed to be steady, unidirectional and fully developed and the 
Newtonian fluid is considered to be incompressible. 
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The Basic equations for the flow are: 
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where ,p  and   are respectively the pressure, dynamic viscosity 

and permeability of the porous medium. Elimination the pressure 
p between the Equation (1) and (2) and using the following 

boundary condition for the flow we get: 
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We consider dispersion of passive solute in this fully developed 
flow through a parallel plate and into this flow a slug of 

concentration is introduced ),(0 yxfCC  . The mass balance 

equation for the solute C  undergoing heterogeneous chemical 
reaction is given by:    

.)(
2

2

2

2





























y

C

x

C
D

x

C
yu

t

C
                                                       (5)  

The initial and boundary conditions for the Equation (5) are: 
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Where, oC  is the reference concentration and s  is the rate 

constant of first order catalysed by the wall. Equation (5.a) is the 
general form of initial concentration distribution. Equation (5.b) is a 
balance of concentration flux with first order chemical reaction 

catalysed by the wall. Equation (5.c) is the concentration C  which 
is symmetric about the centre line in the system. Equation (5.d) 
implies the solute concentration is zero at the distance far removed 
from the source. Equation (5.e) is based on the assumption that 
concentration about the centre line is always finite.  

Now the Equation (4) can be solved for the velocity profile by 
introducing the following non-dimensional parameters 
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Where, 
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Pe o   (Peclet Number) 
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hs      (Reaction rate parameter). 

 

Using Equation (6) in Equations (3) and (4), we get their non-
dimensional form as: 
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The solution for the Equation (7) can be obtained with the 
boundary condition as: 
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Where, 

 



S  Pranesh et al                  Study of Two-Dimensional, all –Time Dispersion 

71 

 




2
2 h
 , (Porous Parameter) 


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
 , (Brinkman Number) 

Substituting Equation (6) in Equations (5 - 5.e), we get the following 
non-dimensional form as: 

,
1

)(
2

2

2

2

2 YXPeX
YU


















 




                                                 (10) 

,)()(),,0( YXYX                                      (11) 

,)1,,()1,,( XX
Y








                                                              (12) 

,0)0,,( 



X

Y



                                                                                 (13) 

,0),,(),,( 



 Y

Y
Y 


                                                            (14) 

.)0,,( finiteX                                                                                 (15) 

The Solution of the Equation (10), subjected to the conditions ((11)-
(15)) is now assumed in the form (Gill and Sankarasubramanian 
([4], [5])) 
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Substituting Equation (16) in Equation (18) we get the dispersion 
model of in the form  
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Where sK i '  are given by   
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Substituting Equation (16) in Equation (10) and using the 
generalized dispersion model given by Equation (19) in the 

resulting equation, we get the equations for ..............,, 2,10 fff  in 

the form: 
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Where .012   ff  

The corresponding boundary conditions for the solution of 
Equation (21) are: 
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Substituting  0k  in Equation (22) we get the differential 

equation for 0f  as: 
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The initial condition for the Equation (26) (i.e., 0f ) by taking 0 , 

we get: 
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We can clearly see that from the above Equation is function of Y 
only on the left hand side and on the right hand side is function of 
both X and Y. This is clear justification of initial concentration 
distribution must be of separable function of X and Y.  

Substituting Equation (11) into Equation (28) we get: 
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From Equation (20) we get 0K  as 
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Where sn '  are the roots of: 
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,9)1(0,tan  nnn                                                         (32) 

and  sAn '  are given by: 
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Having obtained 0f  now we get 0K  from Equation (30) as: 

 .9)1(0,

sin]exp[

sin]exp[

)(
9

0

2

9

0

2

0 













 n
A

A

K

n

n

n

n

n

n

n

nnn






               (34) 

Now we consider the case of initial concentration occupying the 

entire cross section of the parallel plate channel, we take 1)( Y  

and )(0 K  for this is:                                    
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Now let we proceed for long time analysis i.e., as  we get the 

asymptotic solution for  )(0 K  from Equation (35) as: 
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Where 0  is the first root of the Equation (32)  
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We now go ahead and find 211 ,, ffK and 2K . For asymptotically 

long time i.e.  , Equations (20) and (21) gives us sK k '  and 

sf k ' in the form: 
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The  sf k '  must satisfy the conditions ((22) – (25)) and this permits 

the Eigen function expansion in the form: 
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Substitution Equation (40) in Equation (39) and multiplying the 
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The first expansion coefficient  kB ,0   in the Equation (41) can be 

expressed in terms of kjB ,  by using the conditions ((22) – (25)) as: 
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Further from (37) and (40), it can be seen that  
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Now substituting 1k  in Equation (38) and using Equations (42), 
(43) and (45) in the resulting equation we get:  
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Now substituting 1k  in Equation (38) and using Equations (41), 
(43) and (45) in the resulting equation we get:  
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Using the asymptotic coefficients )(),( 10  KK and )(2 K  in 

Equation (19) one can determine the mean concentration 

distribution as a function of ,X and the parameters of the 

problem Pe,, and  . This distribution is valid only for long 

times and is a gross approximation at short and moderate times. 

The initial condition for solving Equation (19) can be obtained from 
Equation (11) by taking the cross-sectional average. Since we are 
making long time evaluations of the coefficients an unfortunate 

side effect is the non-dependence of m  on the initial concentration 

distribution. 

In view of this we just note that the solution of Equation (19) with 
asymptotic coefficients can be obtained by Fourier transforms as: 
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Where 0),( m , 0),( 







X

m  as required by Equation (14) 

and )(),( 10  KK  and )(2 K  are given by the Equations (36), 

(46) and (47). 

Results and discussion 

In this paper, the solution of the Darcy Brinkman momentum 
equation is used in the study of dispersion. We assumed that the 
bounding walls of the channel undergo first order chemical 
reaction with the solute and hence causes interphase mass transfer. 

It is also assumed that the chemical reaction is weak and hence   
is used as the perturbation parameter to solve the equations. Three 

coefficients, viz., the exchange coefficient 0K
 the convective 

coefficient 1K  and the diffusion coefficient 2K  arise in the model. 

The main aim of this work is to study the effect of   on 0K
, 1K  

and 2K .With this objective, we have plotted 0K
, 1K  and 

2

2

 PeK  as a function of  . 

 
Figure 1 is a plot of the velocity distribution as a function of the 

non-dimensional transverse coordinate Y and Brinkman number  

, which shows that velocity increases as   increases. Figure 2 is a 
plot of the velocity distribution as a function of the non-

dimensional transverse coordinate Y  and porous parameter , 
which shows that velocity decreases as   decreases.  Figure 3 is a 

plot of exchange coefficient 0K versus   . It may be observed 

from Figure 3 that as   increases, exchange coefficient 0K  

increases steadily. It can readily seen that as 0 , 0K vanishes. 

This means that due to interphase mass transfer, the term exchange 
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coefficient exists in the model and clearly the exchange 

coefficient 0K   is independent of the flow.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Plots of filter velocity distribution for various values of , for 5  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Plots of filter velocity distribution for various values of , for 1  
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Fig 3: Plots of dimensionless convective coefficient 0K  against dimensionless reaction rate 

parameter . 

 

Figures (4) - (5) are plots of convective coefficient 1K  versus    

for various values of  and  . As   increases, the convective 

coefficient increases. A physical explanation for this is, the effect of 
the wall reaction is to deplete the solute in the slower moving wall 
region and therefore the solute distribution is weighed in favour of 
the fast moving central region. It can be found that as the porous 

parameter   for a given non-zero value of   , the convective 

coefficient 1K  decreases and for the increasing values of 

Brinkman number  the convective coefficient 1K  increases. This 

is because an increase in   will reduce the filter velocity and hence 

the convention while an increase in the value of  will increase the 

filter velocity and the advection. 
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Fig 4: Plots of dimensionless convective coefficient 1K  against dimensionless            

reaction rate parameter  for different values of  . 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig 5: Plots of dimensionless convective coefficient 1K  against dimensionless   reaction 

rate parameter  for different values of  . 

 

Figures (6) - (7) are plots of dispersion coefficient 2

2

 PeK  

versus   for various values of  and  . From figures (6) - (7), it 

may be observed that as   increases, the dispersion coefficient 
2

2

 PeK  decreases. This means due to interphase mass transfer 
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the dispersion in axial direction is decreased effectively. This is 

only to be anticipated because as the wall reaction parameter   

increases there is increase in predominance of transverse transport 
over molecular diffusion. We also found from figures (6) - (7) that 

as the porous parameter   and Brinkman number   increases, 

the dispersion coefficient decreases.  

 

 

 

 

 

 

 

 

 

 
 

Fig 6: Plots of dimensionless dispersion coefficient 
2

2

 PeK  against dimensionless 

reaction rate parameter  for different values of  . 

 

  

 

 

 

 

 

 

 
 

Fig 7: Plots of dimensionless dispersion coefficient 
2

2

 PeK  against dimensionless 

reaction rate parameter  for different values of  . 

 
We now proceed to discuss the results obtained for mean 

concentration in the case of wall reaction (i.e. 0 ). In the case of 
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wall reaction it is to be noted that the distribution of the mean 
concentration at small and moderate times is approximate and we 
find the same to be accurate for long times. This is because the 

values of 1K and 2K  have been evaluated asymptotically.  

Figure (8) is a plot of m  versus X  for various values of   and for 

a fixed value of  , for a given time. It can be seen readily from 

figure (8) that for a given   and  , at a given time, the mean 

concentration m  starts increasing initially with X  and we see that 

further increase in X  the mean concentration reaches a maximum 

and then decreases to zero. Because of decrease in the value of 2K   

we see that the peak of the men concentration at a given time 

increases as   increases. For higher values of   , the distribution 
of concentration starts at an earlier position and ends early. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8: Plots of dimensionless mean concentration m  against axial distance X for different 

values of  , 01.0,5   . 
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Fig 9: Plots of dimensionless mean concentration m  against axial distance X for different 

values of  , 01.0,1   . 

Figure (9) is a plot of m  versus X  for various values of   and for 

a fixed value of  . It can be seen readily from figure (9) that for a 

given    and  , at the given time, the mean concentration 

m starts increasing initially with X  and we see that further 

increase in X  the mean concentration reaches a maximum and 

then decreases to zero. Because of decrease in the value of 2K  we 

see that the peak of the men concentration at a given time increases 
as   increases.  

 

 

 

 

 

 

 

 

 

 
Fig 10: Plots of dimensionless mean concentration m  against time   for different values of 

 , 01.0,5   . 
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Figure (10) is a plot of m  versus   for various values of    and for 

a fixed value of  . It can be found that for a given   and for a 

fixed position, and for a given wall reaction parameter  , the mean 

concentration at a particular time starts increasing and later the 
mean concentration reaches maximum and then decreases to zero 
which signifies the dispersion of the solute is complete. It can be 

seen readily that as   increases, the dispersion starts early. This is 

because an increase in   will cause the solute to arrive early at the 

fixed position. As   increases, the peak of the mean concentration 
also increases. 

 

 

 

 

 

 
 
 
 
 
 

Fig 11: Plots of dimensionless mean concentration m  against time   X for different 

values of  , 01.0,1   . 

Figure (11) is a plot of m  versus   and for various values of   

and for a fixed value of  . It can be found that for a given  , for a 

fixed position, and for a given wall reaction parameter  , the 

mean concentration at a particular time starts increasing and later 
the mean concentration reaches maximum and then decreases to 
zero which signifies the dispersion of the solute is complete. It can 
be seen readily that for higher values of   the dispersion of solute 
starts slowly and as a result of it, the solute takes longer time to 
disperse completely. 
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