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KLEIN PARADOX FOR BOUND STATES -
A PUZZLING PHENOMENON

Nagalakshmi A. Rao* & B.A. Kagali**

ABSTRACT

While Klein perodox is often encountered in the confext of scotfering of
relativistic parficles at a potential barrier, we presently discuss a puzzling
situation that arises with the Klein-Gordon equation for bound stafes.
With the usual minimof coupling procedure of introducing the interoction
patential, @ paradoxical situation results when the “hill” becomes a
“well”, simulating o bound state like situation, This phenomenal
phenomenon for bound states is contrary to the conventionol wisdom
of quantum mechanics and-is analogous fo the well-known Klein
paradox, a generic properly of relativistic wave equations.

1. Introduction

In non-relativistic quantum mechanics, the scattering of an electron by a potential
barrier is known to be one of the simplest solvable problems. However, a similar
problem with a potential step or a barrier in relativistic quantum mechanics, often
results in paradoxical situations, called the Klein Paradox.
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In the original work of Klein," [1929], electrons incident on a large potential step
was addressed. The problem was treated with the Dirac equation and it was found
that for iarge potentials, V{x) > E + mc?, the reflection coefficient, R, exceeds unity
while the fransmission coefficient, T,, becomes negative. This suggested that more
particles are reflected by the step than are incident on it. Such a puzzling situation
contradicfing non-relotivistic expectation was termed Klein Paradox. This phenomenon

suggests the possibility of creation of particle and anfiparticle pairs by a Klein step.

Several authorsi4 have discussed Klein Paradox under various circumstances.
Considering a potential step with sharp boundaries, Bjorken”! has illustrated that a
weak potential having decaying exponential solutions inside the potential region
leads to undamped oscillatory solutions for potentials exceeding {F + mc?, consistent
with the original version of Klein Paradox. However, Greiner,® on the basis of the
group velocity treatment has illustrated an unexpected largeness of the transmission
coefficient. While Brojken’s explanation of Kiein Paradox is essentially based on
pair production, Greiner’s representation is that of single-parficle interpretation.

Similar results exist for Kiein Gordon particles as well. Guang Joing et al. ¥ have
shown that the Kiein-Gordon equation with o step potential in minimal coupling
exhibits the Klein Paradox at the one-particle level, Rubin Landaut'® has given a
reasonable explanation of the Klein Paradox based on particle-antiparticte pair
production, '

In the following section, we discuss the appearance of a paradoxical result in the
context of bound states.

2. The Klein-Gordon Equation with a Potential

The time-independent one-dimensional Klein-Gordon equation for o general
potential introduced as a vector field, may well be written as

d? (E-V{x)? —mi?

This equation may be cast into the form of Schrodinger equation as

d? 2
ST Ea=Valw (=0, 2)
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with

E.? ___mzcd

F,.=
4 ome?

(3)
and

ﬁéEV(x)—V2(x)

vV
of 2me?

(4)

The concept of effective energy and effective potential used to simulate the properties
of relativistic wave equations leads to paradoxical results.

We first review the finite square well problem and then address the case of potential

hill.
A. Potential Well

For an attractive square well potential defined by

-V, for| x|<a
Vix)=l ¢
) {0 for |x|>a ()
the effective potential takes the form
26V, ~Vy
Vg (x)mimto=o g
e (X) o |x[sa {6)

and vanishes elsewhere. Considering positive energy states, the effective potential
looks like another square well potential and therefore, so fong as E,<oor
E < mc?, bound states are possible. This result is quite reasonable.

B. Potential Hill

We now consider a potential barrier defined by

_[=Vyfor|x|<a
V(x)'{o for | x|>a 7)

which is not the usual Klein step, but has better-defined boundaries. The effective
potential for a ‘hill’ takes the form

i6



-2EV,-V¢
V(== ®

the effective energy remains the same. It is trivial to check that

E?—m’c* +V? —2FV,

: g for | x|<a
{Eey —Ver)= 22mc2 4
woe P ome (9)
W for|x|>o

Interestingly, V. can be positive, zero or even negative for a range of values of the
barrier height V,,

For, V, < 2mc?, V_ remains posmve, and the problem is analogous to a typical
scoh‘enng problem

ForV,= 2mc?, the effective potential vanishes and the barrier becomes supercritical.

However a puzzling situation arises for a barrier height exceeding 2me?. As is seen
from Eqn. (8}, the effective potential becomes negative anid thus a ‘hill’ is transformed
into a ‘well’. For {V, > 2mc?), parficles, instead of being scattered by the potential
“hill” are trapped inside the simuloted “well”. This means that bound states are
possible for strong barriers. Such a porcdoxucul situation may be called the Klein
Paradox for bound states.

More importantly, it may be inferred that the potential hill need not be only of the
square fype for such anomalous bound states. The actual number of the bound
states and the energies, however, will depend on the shape and size of the hill.
These trivial results may be worked out from the standard procedures of quantum
mechanics.

3. Results and Discussion

While the original version of Klein Paradox concerns scattering situation of Dirac
particles at a potential step, we have shown that an analogous paradoxical situation
arises even for bound states. With the usual minimal coupling procedure of
introducing inferaction, the Klein-Gordon equation leads to bound states for finitely
extended pofential hills, contrary to the conventional wisdom of quantum mechanics.
So long as the effective vector potential remains positive, (V < 2mc?) for repulsive
potentials, the situation is similar to o typical scattering problem. As the potential
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becomes stronger and stronger, exceeding the limiting value £ + me? the ‘hill’
becomes a ‘well’ simulating o bound state-like situation. Surprisingly, a typical
scattering problem is transformed into o bound state problem. Thus Klein Parodox
is retrieved for bound states in the case of strong repulsive, finite ranged barrier.

Interestingly, a paradoxical situation like this does not arise for pure scalar repulsive
potentials. In such a case, a barrieris transformed into another barrier, no maiter
how strong or weok the potential is. The paradoxical result for bound state illustrates
that Klein-Gordon equation is reasonable even at the one particle level,
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