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GEOMETRIC CIRCULAR GRAPHS

Medha Huilgol*

ABSTRACT

In this paper we study a class of graphs, which resemble a Circle in a
plane in terms of diameter and radius. We infroduce the term “Geometric
circular graphs” for those graphs whose diameter is equal to twice
the radius of the graph. Here we have studied some properties of
geometric circular graphs. Also we have found some bounds in terms
of the number of edges.
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1. Introduction

In this paper we introduce a class of graphs in which we bring the notion of a
circle, along with radius and diameter, from Euclidian geometry. in literature, the
concept of radius {ond diameter) has been infroduced on the basis of distance in
graphs. It is well known the diameter of a circle is twice its radius in Euclidian
geometry. But in case of graphs the diameter is bounded by radius at the lower end
and twice radius of the graph on the upper end. Hence diometer assumes any
value between these two extremes. The class of graphs for which radius is equal to
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diometer has been studied by [1], [3], under the title “self-centered graphs” or
“equi-eccentric graphs”. The class of graphs for which diameter is twice the radius
of a graph, exactly resembles circle in a plane. Hence we term these graphs as
“Geometrical Circular Graphs”, in short GCG.

Definition : A connected graph is soid fo be a geometric circular graph, GCG, if
its diameter is twice radius, that is diam(G) = 2 rad(G).

For all definitions and terminology the reader may refer [4]. In particular, in this

paper the diameter of a connected graph G is denoted by diam(G)= d(G) and the
radius of the connected graph G is denoted by rad{G)=r(G}. -

2, Existing Results and Definitions

In this section we list some existing results, without proof, and definitions, which are
helpful in proving the results of this paper.

Proposition1.1[5): Suppose that oll diametral paths of a graph G avoid the

center, then (G) + 2< d{G) < 2¢(G) - 1 and all pairs of values in this given
range are aftainable.

Proposition1.2[6]): If d(G) = 3, then d(G) < 3.

Proposition 1.3[4]: Every non-trivial self-complementary graph has diameter 2
or 3.

Proposition1.4[4]: Any graph G can be embedded in a supergraph H such that
<C{H}> is isomorphic to G.

Proposition1.5 [8]: Let G and H be simple connected graphs. Then

(G x H) = ((G) + r(H)
© d(G xH) = d(G) + d(H)

Proposition 1.6[9]: For a graph G if d(G)= 2r(G), then P(G)c EC(G).

3. Results

In this section we prove some results on geometric circular graphs.
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Lemma 2.1: A connected graph is geometric circular graph, GCG, if of least one
diametral path contains a central vertex. ‘ '

Proof: Let G be a connected graph. By Proposition 1.1{5], if all diametral paths
avoid the center, then d{G) < 2r(G) - 1, holds. ¥ af least one diametral path
contains a central vertex, then d(G) = 2r(G). Since G is connected d{G) < 2r(G).
Hence equality holds, making the graph G to be a GCG.

Propdsi\‘ion 2.2: if Gis a GCG, then any diametral path cannot contain more
than one central vertex.

Proof: For a GCG, G, let x-y be a diametral path. Suppose the x-y diametral path
contains two central vertices, viz. u and v. Then,

dx, y) < dix u) + d{u, y) + dfu, v}
—sdfy) = d(G} < 2(G) + dlu V) = 2(G) < 2G)+ dlu, v) =dlfu,v) = 0 v =x

Hence there lies exactly one central vertex on any diametral path.

Note: Clearly, if G is a GCG, then there does not exist a diametral path containing”
an edge of <C(G)>.

Proposition 2.3: In a GCG, every central vertex hos at least two eccentric vertices.
Proof: Let G be o GCG. Let x be a central vertex of G. By Proposition 2.2 above,
x lies on a diametral path, say, u-v path, i.e. d{u,v)=d{G)=2 r(G). It x is @ midpoint

of u-v path, then u,v will be the eccentric vertices of x.

If x is not o midpoint of u-vlpcfh, then, for the midpoint of u-v path, say,

%, e(x)2 .;—d(G)=r(G)
If efx) >]5d(G), then x’2 C(G), where C{G) denotes the center of the graph G.

If e(x')=%d(6) , then x’ {= x) e C(G}. Hence, x’ will have u and v as its eccentric

vertices.

Note: From the above result it is clear that every central vertex is a midpoint of
some diametral path in a GCG. But the converse need not always be true.
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Theorem 2.4: A connected graph G is GCG if and only if P(G) = EC(G), where
P(G) denotes the periphery of G and EC{G) denotes the set of all eccentric verfices
of central vertices of G.

Proof: Let G be GCG. By Proposition1.6 [9] , P(G) < EC(G).

Conversely, if x e EC(G) = there exisis a vertex uveC(G) such that d(x,u} = r{G)
and x is an eccentric vertex of u i.e. d(x,u)=1/2 d(G). By the above proposition

there exists at least one more eccentric vertex for u, say, y. Hence, d(x.y) = d{x,u}
+ d(u,y)=2 r(G} = d{G). Hence, xy e P(G}.

So EC(G) < P(G), making the two sets equal in case of geometric circular graphs.

Proposition 2.5: If a graph G is GCG, then its complement G is not.

Proof: Let G be a GCG. Hence, G is connected and has finite radius and diameter.
f d(G) 2 3, then by Proporosition1.2[6], d(G) < 3 If possible assume that G is
GCG, then d(G) = 2 and r(G) = 1. Hence, in G there exists a vertex, say, v,
such that dega u=p-T=deg,u =0, acontradiction to the connectedness
of the graph G.

If d{C}<3 then d{G)<2 and hence, d(G)=2, r(G} = 1. Similar argument as

above leads to the contradiction fo the connectedness of &, if it were GCG,
Hence, it G is GCG, then is not. '

Note: If G is GCG, then G is not a GCG.

Theorem 2.6: There does not exist a self-complementary GCG.

Proof: By above proposition the proof follows.

Proposition 2.7: Any connected graph G can be embedded in some GCG.
Proof: Let G be a connected graph. We know that it it is easy to embed G as an

induced subgraph in any supergraph H such that <C(H)> is isomorphic to G by
[4]. Indeed, it is the sequential join

K, + K + ... +K(r—times) + G + K, +....... + K, {r—times). These graphs
have rad(H)=r and diem(H) = 2, and hence these are geometric circular graphs.

Proposition 2.8: The Cartesian product of two graphs is GCG if, and only if both
graphs are geometric circular.
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Proof: Let G, and G, be any two geometric circular graphs. Let G = G, x G, be the
Cartesian product of G, and G,. By Proposition 1.5(8], (G, xG,) = #(G)) -+ r(G))
and d(G,x G} = d(G,) + d(G,) Since both G, and G, are geometric circular,
d(G)) = 2r(G)) and d(G))= 2 f(G)). Hence, d(G,xG,) = d(G)) + d(G,) =
2r(G,) + 2r(G,) = 2([r(G,) + «(G,)] = 2r(G,xG,) making the Cartesian product
to be a geometric circular graph.

For the converse, let the Cartesian product of two graphs be geometric circular, i.e.
for any two graphs G, and G,, let G = G,x G, be GCG. Hence, d(G, xGQ) =
(G, xG,)= d(G)) + d(G,) = 2r(G) + 2r(GQ)

d(G,)+d(Gy)-2(G,)

= r(G)= 2

fd(G,}=2r(G,) that is if G, is GCG, then G, is also GCG.
it (G, < 2r (G,), then d(G,)<2r(G)). Hence d(G,xG)) < 2r(G,xG J @

contradiction to the assumption that G = G, x G, is a geometric c;rcular groph

So both G, and G, have fo geometric circular if their Cartesian product is geomefric
circular.

Proposition 2.9: Fora GCG, G, of order p, radius r, diameter d, size q, and the
{p—d)’+3p-d -4
2

following holds true: p-1<€g< , and both the bounds are

attainable.

Proof: Given G is GCG. Hence d isfinite, so we need at least p-1 edges to cover
all vertices. Hence, the lower bound follows and a tree with one central verfex
attains it, -

For the upper bound, we have d(G)=2r(G). Hence there exist at least one diametral
path of length d. Let v,, v, ....., v, v,,,, be one of the diametral paths. Let the
vertex set V(G} be partitioned into subsets V,, V,, ....., V,, V., such that each

v,eVand all those vertices x & V, satisfying the following two conditions: d{x,v,)<d
and d(x,v,,)<d otherwise the length of a path containing x, v,, v, ..., v, v,

exceeds the diameter. This partition is possible because each V, contains at least
one vertex viz., v, itself. We can add maximum possible edges to each V, among
v/s and among verfices ofV,andV,,,, without disturbing d(G). The resulhng graph

23



d+l .
is K, +K,, +....+K, , where D_n =p This graph is maximal with respect to the
i=l

diameter in the sense that by adding an additional edge to the graph the diameter

a4 (1 d
is decreased by one. Hence, 9= 2[2J+Z;".-ﬂs+r So g is maximum when both

summands are maximum.

J+]

i=l

d+l (0 ) Enﬁ d .
For 2 21< '2 7| 2 | as at least d-vertices are required to maintain the

diameter.

d
But sum of the products 2_ M is maximum whenever n=n_.
is] .

As p-d vertices have already gone in first term there remain only d-vertices in
second term. So, G would be isomorphic to Koa tKy + K+, +K, {d ~ fimes)

The size of the graph is maximum if

GzK+ K +....+ Ky (r -fimes}+ K, +K,+ K, +.....+K,{r - times) . So,

+4(p-d)+4(r-1)
2

< (p-d)(p-d—?+4)+(2d-4)= (p-d)f+3p-d-4
9= 2 2 ‘

)
qs[pz ]+2(P‘d)+2(r-])z(P'd)(p-d-])

Hence, GzK +K +.4+K {r-times)+ K, ,+K + K +.....+K,(r-times) is the
realizing graph for the upper bound of q.

In Theorem 1.5{9], it is proved that if a graph G hos d(G)=2 1{G), i.e. if the graph
G is GCG, then P(G) = EC(G).In view of this result one may consider the size of

the sets PG} and EC(G). The following proposition gives a graph with given size
of P{G} and EC(G). .

Proposition 2.10: For any positive integers m and n, 2 < m < n, there exists a
geometric circular graph G such that |P(G)| = m, |EC(G}| = n.
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Proof: Considerapath P, : v, Vor veeer Yoo 1u Vo orenens Vo, 1 And consider another
path of length r whose end vertex is concatenated with v, and it is labeled as
Vo Upr Ups e, » . Form o graph G by joining m-2 end verfices with v, and
n-m-T end vertices with u_,. Labeling these extra end vertices in forming G as
g;é(\#;g,...., W, o and w’, Wy W' Clearly, d(G) = 2 f{G). Hence G is a

Also it is not difficult to observe that P(G) = Ve Wy Wor e W
EC(G) ={v, W', Wiy ..o w’ U P(G).
Theretore [P(G}] = m, |EC(G)| =m +n—m=1 + 1 = n. Hence the result.
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