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Abstract

Acoustic waves are those waves which travel with the speed
of sound through a medium. H. Lamb (1909, 1910) had
derived a cutoff frequency for stratified and isothermal
medium for the propagation of acoustic waves. In order
to find the cutoff frequency many methods were intro-
duced after Lamb’s work. In this paper, we have chosen
the turning point frequency method following Musielak et
al. (2006) and Routh et al. (2014) to determine cutoff fre-
quencies for acoustic waves propagating in non-isothermal
medium which can be applied to various atmospheres like
solar atmosphere, stellar atmosphere, earth’s atmosphere
etc. Here, we have analytically derived the cutoff frequency
and have analyzed and compared with the Lamb’s cut-off
frequency for earth’s troposphere.
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1. Introduction

Cutoff frequency was introduced, about a century ago, for linear acous-
tic waves propagating in isothermal and stratified medium [12]. The
cutoff frequency, due to Lamb, is defined as the ratio of sound speed
to twice density (pressure) scale height. We compute such frequency
by solving the acoustic wave equation for displacement in the verti-
cal direction. If the background medium is isothermal,that renders
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globality to the cutoff frequency implying the cutoff frequency re-
mains unaffected throughout the medium. This cutoff will be des-
ignated as the global acoustic cutoff frequency, for the remainder of
the manuscript. Non-isothermal atmosphere has also been considered
where the temperature diminishes linearly with height. Lamb’s orig-
inal treatment of acoustic waves was expanded to vertical and hori-
zontal dimensions by assuming existence of a uniform vertical tem-
perature gradient. The manuscript details and exploits analytical re-
sults to attain theoretical insights into the range of frequencies related
to the propagating acoustic waves in the model [13, 11]. Subsequent
studies in propagation of acoustic waves revealed different aspects
of the wave propagation. These studies are based on investigations
using a variety of methods including global and local dispersion re-
lations, the WKB approximation, analytical or numerical solutions to
acoustic wave equations. If the background medium is homogeneous
[36, 16], we may obtain the global dispersion relation for acoustic
waves. The dispersion relation can be constructed even when the
speed of sound is not adversely impacted by gradients of the physical
parameters of the medium , as observed in Lamb’s isothermal atmo-
sphere [17, 21, 4, 15, 25, 26]. Several authors attempted to justify
”local dispersion relation” approach, which requires shorter acoustic
wavelength compared to characteristic scales. It is worth mention-
ing that the basic physical parameters in the medium vary over these
wavelengths [36, 4, 5]. This is known as the WKB approximation
used to investigate acoustic (and other) waves [5, 24, 28, 27] Ana-
lytical and numerical solutions to acoustic wave equations, applicable
to different physical scenario, are used to ascertain conditions of the
wave propagation [36, 17, 21, 4, 22, 3].

Lamb exhibited that the cutoff is the innate frequency of the at-
mosphere. This implies that atmospheric oscillations are triggered
by acoustic waves which propagate through the medium, endowed
with frequency identical to the natural frequency [12, 9]. The acous-
tic cutoff frequency plays an important role in Helioseismology and
Asteroseismology. Helioseismology is the study of solar oscillations
responsible for establishing the internal structure of the Sun [20, 23].
Asteroseismology deals with oscillations of different stars [2, 10, 7].
The cutoff has also been used to study free atmospheric oscillations
of the Earth [23] and other planets [10] and acoustic oscillations of
Jupiter [7]. The acoustic cutoff frequency is a global quantity as dis-
cussed and therefore cannot be computed formally for the entire at-
mosphere. This is because planetary and stellar atmospheres are not
isothermal. Hence, classic approaches are adopted that evaluate the
cutoff at each atmospheric height by leveraging the neighborhood val-
ues of the temperature [20, 7]. The approximation is rather crude, in
the presence of steep temperature gradients in atmosphere.

This paper puts forward the concept of turning-point frequency
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method [8, 18, 19, 31, 33, 34] to compute the cutoff frequency in
Earth’s non -isothermal atmosphere (troposphere). We obtain two
important results from the proposed approach:

• derived cutoff frequency exhibits natural locality i.e. value at a
given atmospheric height determines the frequency characteris-
tic of acoustic waves enabling propagation at this height.

• cutoff frequence attains a large value at the bottom of Tropo-
sphere and falls off rapidly with the height and attains an almost
constant value.

Therefore, required cut-off frequency for earth’s troposphere has
been derived based on local cut-off frequency results. A visual com-
parison with Lamb’s solutions is accomplished. These results are
obtained with the help of ISA (International Standard Atmosphere)
model [1, 6]. The remainder of the paper is organized as follows:

Section 2. covers derivation of acoustic waves from basic hydro-
dynamic equations.

Section 3. discusses theoretical foundation and proof of concept
of local cut-off frequency.

Section 4. details analytical calculations of earth’s troposphere.

2. Acoustic Wave Equations

Routh et al. [32] has been imitated to derive cutoff frequency of
acoustic wave for non-isothermal atmosphere. Let us consider the 1-D
atmospheric model with density gradients, temperature and pressure
along the Z-axis. In terms of basic 1-D hydrodynamic equations [30],
propagation of linear and adiabatic acoustic waves are described and
given by,

∂ρ

∂t
+
∂(ρ0u)
∂z

= 0 , (1)

ρ0
∂u
∂t

+
∂p
∂z

+ ρg = 0 , (2)

∂p
∂t

+ u
dp0

dz
− c2

s

(
∂ρ

∂t
+ u

dρ0

dz

)
= 0 , (3)

where u, p and ρ are the perturbed velocity, pressure and density re-
spectively. Also, ~g is gravity, cs is the speed of sound, ρ0 and p0 are the
background gas density and pressure respectively. The background
medium is assumed to be in hydrostatic equilibrium. This indicates,
dp0
dz = −ρ0g.

The speed of sound is formulated as cs = [γp0/ρ0]1/2 = [γRT0/µ]1/2,
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where γ is the ratio of specific heat, R is the universal gas constant, µ
is the mean molecular weight and T0 is the background temperature.

For stratified and non-isothermal medium, T0 = T0(z), cs = cs(z),
with density Hρ and pressure scale heights Hp being functions of z.
Define, qi, where i = 1, 2 and 3, with q1 = u, q2 = p and q3 = ρ,
and combining the linearized and 1-D hydrodynamic equations yields
following wave equations

L̂i

[
∂2

∂t2 − c2
s(z)

∂2

∂z2 +
c2

s(z)
Hi(z)

∂

∂z

]
L̂−1

i qi = 0 , (4)

The above equation describes the propagation of linear and adia-
batic acoustic waves in a non-isothermal atmosphere.
Here

L̂1 = 1̂, L̂2 = 1̂ − g
(
∂

∂t

)−2
∂

∂z
and L̂3 =

∂2

∂z2 . (5)

Now, H1(z) = Hp(z) and H2(z) = H3(z) = −Hρ(z) with

Hp(z) =
1

p0(z)
dp0(z)

dz
and Hρ(z) =

1
ρ0(z)

dρ0(z)
dz

, (6)

W.K.T Hρ(z) , Hp(z) and 1
Hρ

= 1
Hp

+
Hp′

Hp
.

.
On transformation of qi = L̂iq1i, Eq. (4) becomes

[
∂2

∂t2 − c2
s(z)

∂2

∂z2 +
c2

s(z)
Hi(z)

∂

∂z

]
q1i = 0 , (7)

3. Local acoustic cutoff frequency

Let us consider the transformation [1],

dτ =
dz

cs(z)
, (8)

Following Routh et al. [32], we can write the critical frequencies as
functions of z in the following way

Ω2
cr,u(z) = (ωac + ωas)2 + 2ωacωas − csω

′
as , (9)

and

Ω2
cr,p(z) = (ωac + ωas)2 − 2ωacωas + csω

′
as . (10)
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where ωac =
γg
2cs

=
cs
2H is the original Lamb acoustic cutoff frequency

and ωas = 1
2

dcs
dz .

It is worth mentioning that, the isothermal atmosphere of both
the critical frequencies can be reduce to Lamb’s cutoff ωac.

Using the Fourier transform in time and applying the oscillation to
turning-point theorems [8, 18, 19, 31, 33, 34], the following turning-
point frequencies are obtained

Ω2
tp,u,p(τ) = Ω2

cr,u,p(τ) +
1

4τ2 (11)

The turning-point frequencies have two separate solutions, propagat-
ing and non-propagating (evanescent) waves. However, each wave
variable is endowed with a turning-point frequency out of which only
one may be the cutoff frequency. Therefore, we follow Musielak et
al. [18] and Routh et al. [8, 18, 19, 31, 33, 34], and identify the
largest turning-point frequency as the cutoff frequency. (i.e., to check
whether Ω2

cr,p(z) > Ω2
cr,u(z) or vice versa). By using similar conversion

for the turning-point frequencies Ω2
tp,u(τ) and Ω2

tp,p(τ). we get,

Ω2
tp,u,p(z) = Ω2

cr,u,p(z) +
1
4

[∫ z dz̃
cs(z̃)

+ τC

]−2

, (12)

and the cutoff frequency given by

Ωcut,(z) = max[Ωtp,u(z),Ωtp,p(z)] . (13)

So the condition for propagation of waves is ω > Ωcut and similarly
for non-propagating waves is ω ≤ Ωcut.[8]

Here the cutoff frequency is a local quantity, which describes the
relation between height with respect to the frequency of acoustic
waves.

4. Cutoff Frequency for Troposphere

To derive the analytical cutoff frequency, consider the variation of
temperature T with respect to the height [1, 6] and is given by the
formula

T = Tc −Cz (14)

where Tc is background temperature =288.15k, C= 6.5
1000 in terms of

meters for height. Thus, the expression of sound speed assumes the
following form:

Cs = [γR(Tc −Cz)/µ]1/2 (15)

51



Mapana Journal of Sciences, Vol. 17, No. 1 ISSN 0975-3303

The above expression can be simplified further in the following man-
ner,

Cs = Cso[1 − az]1/2 (16)

Where, Cso = [γRTc/µ]1/2 and a= C
Tc

Now,

ωac =
γg

2Cso[1 − az]1/2 (17)

Again,

ωas = −
acso

4[1 − az]1/2 (18)

On differentiation,

ω′as = −
a2cso

8[1 − az]3/2 (19)

Substituting the above results in equations(14) and (15) ,

Ω2
cr,u(z) =

γ2g2

4C2
so[1 − az]

+
3a2C2

so

16[1 − az]
−

aγg
2[1 − az]

(20)

Ω2
cr,p(z) =

γ2g2

4C2
so[1 − az]

−
a2C2

so

16[1 − az]
(21)

τ =

∫ z dz̃
cs(z̃)

+ τC = τC −
2

acso
[(1 − az)1/2 − 1] (22)

We get Ω2
cr,p(z) > Ω2

cr,u(z).
Hence the cutoff frequency of equation (17) takes the form,

Ω2
tp,p(z) =

γ2g2

4C2
so[1 − az]

−
a2C2

so

16(1 − az)
+

1

4(τC −
2

acso
[(1 − az)1/2 − 1])2 (23)
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Figure 1. Temperature v/s height: Temperature ranges from 288.2 K to 210 K and
Height ranges from 0-12 Km

Figure 2. Comparison of Cutoff frequency and Lamb’s cutoff v/s height in Tropo-
sphere:The calculated cutoff starts from a very large value at base of troposphere
and drops rapidly to 0.138 Hz at height 115m following inverse law characteristic of
plot and then attains an almost constant value of 0.0134 Hz at height 12 km. Lamb’s
frequency is almost constant (0.0032 Hz)

Figure 3. Time period v/s height: Time period ranges from a very low value (close
to 0s) at base of troposphere to 74.3 s at 12 km height.

5. Results and Discussion

The fig (1) showing the plot of temperature v/s height describes the
variation of temperature in isothermal medium of the troposphere.
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Figure 4. Travel time (τ) v/s height: Travel time increases linearly from 0 to 37.9 s
at height 12 km.

This graph was obtained on the basis of analytical solution of the turn-
ing point frequency method (refer equation (4.19)). The temperature
decreases linearly with height; temperature decreases linearly from
288.2 (k) to 210 (k) at height 12 km (troposphere). The fig (2) show-
ing the plot of cut off frequency v/s height describes the variation of
cutoff frequency in non-isothermal medium of the troposphere. This
graph was obtained on the basis of analytical solution of the turning
point frequency method [32]. The frequency decreases following in-
verse square law characteristic. The calculated cutoff starts from a
very large value at base of troposphere and drops rapidly to 0.138 Hz
at height 115m and then attains an almost constant value of 0.0134
Hz at height 12 km. Lamb’s frequency is almost constant (0.0032
Hz) throughout the troposphere. The plots (3) and (4) show acoustic
waves having period from few seconds at the base to 74.3 seconds
at the top of the troposphere and the travel time to reach the top of
troposphere is 38 seconds approximately.

6. Conclusion

We followed Routh et al. [32] to determine the cutoff frequency of
acoustic waves in non-isothermal media. The novel technique makes
use of integral transformations to cast the wave equations for both
wave variables in their standard forms. Consequently, turning point
frequencies are computed for each wave variable by using oscillation
theorem. The cutoff frequency is the larger of the two turning point
frequencies. We used the temperature variation of Earth’s Tropo-
sphere to study the effects of the temperature gradients on the cutoff
frequency. As the temperature increases linearly with height, the cut-
off frequency is observed to be large at the bottom of the Troposphere
and diminishes with height following inverse square law characteris-
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tic thereafter. We also compared the calculated cutoff to the Lamb
cutoff frequency, treated as a height-dependent quantity. The com-
parison shows that they are significantly different from each other as
Lamb’s cutoff maintains an approximate constant value (0.0032 Hz)
throughout the troposphere. The travel time for the acoustic wave lin-
early increases with height following the linear nature of temperature
variation of Troposphere.
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