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Some Numerical Examples on the Stability of
Fractional Linear Dynamical Systems
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Abstract

The concept of stability of a class of fractional-order linear
system is considered in this paper. Existing sufficient condi-
tions are assumed to guarantee the stability of linear mod-
els with the Caputo fractional derivatives. The results have
been developed by using the concept of Laplace transform,
and approximations of Mittag-Leffler. Furthermore, results
concerning asymptotical stability of linear fractional-order
models are also achieved. The proposed method is based
upon Eigen values and the characteristic polynomials. Nu-
merical illustrations are specified to exhibit effectiveness of
the proposed method.
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1. Introduction

Fractional Differential Equation (FDE) is responsible for a mathemati-
cal model for many systems in different fields such as control systems,
population dynamics, physical, biological, chemical kinetics, and so
forth. Specific depiction of the real life phenomena can be enriched
by FDE. Deficient in the application background and complexity of
fractional system fails to attract much consideration. In recent times,
it has been established to be valuable tools.

Stability of fractional linear autonomous dynamical systems has
been considered and analyzed by different methods such as stabil-
ity theorem [2] to guarantee stability of the systems through the lo-
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cation in the complex plane of the Eigen values and Linear Matrix
Inequality (LMI), Fractional Lyapunov direct method, finite time sta-
bility [6] and Mittag-Leffler Stability [5]. The stability problem for
fractional nonlinear systems has been studied in prior works but it
remains open.

Nonlinear Fractional system can be solved by numerical methods.
Several numerical methods are available to analyze the nonlinear sys-
tem such as Homotopy Perturbation Method [4, 12], variation Itera-
tion Methods [3] , Euler algorithm [7, 9] . In this work linear frac-
tional system has been solved by a numerical method proposed by
Momani and Odibat [9].

The organization of this paper is as follows. In the next section,
preliminary concepts and basic definitions have been specified. Sec-
tion 3 summarizes the prevailing concept of analyzing stability theory.
In Section 4, some examples were given and solutions plotted to il-
lustrate the considered theory. Also a conclusion is given in Section
6.

2. Preliminaries

Some basic definitions and some results are given in this section.

Definition 2.1. [8](Riemann - Liouville Fractional Integral). The
Riemann-Liouville fractional integral operator of order α > 0 of a func-
tion f ∈ L1(R+) is defined by

Iα f (t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, (1)

where Γ(.) is the Euler gamma function.

Definition 2.2. [8](Riemann - Liouville Fractional Derivative). The
Riemann-Liouville fractional derivative of order α > 0, n− 1 < α < n, n ∈
N, is defined as

Dα f (t) =
1

Γ(n − α)

(
d
dt

)n ∫ t

0
(t − s)n−α−1 f (s)ds, (2)

where Dn is the ordinary differential operator and the function f (t) has
absolutely continuous derivative upto order (n − 1).

Definition 2.3. [8](Caputo Fractional Derivative). The Caputo frac-
tional derivative of order α > 0, n − 1 < α < n, n ∈ N, is defined as

CDα f (t) =
1

Γ(n − α)

∫ t

0
(t − s)n−α−1 f n(s)ds, (3)
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where the function f (t) has absolutely continuous derivative upto order
(n − 1).

Definition 2.4. [8]Gamma function. The Gamma function is defined
as

Γ(n) =

∫ ∞

0
e−xxn−1dx, n > 0 (4)

Definition 2.5. [8]Mittag-Leffler function The one-parameter Mittag-
Leffler function is defined as

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, (α > 0, z ∈ C). (5)

The two-parameter Mittag-Leffler function is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, (α, β > 0, z ∈ C). (6)

Definition 2.6. The Laplace transform of Caputo fractional derivative
is dfined by

L(CDαx)(t) = sα(Lx)(s) − x1sα−1, 0 < α < 1
L(CDαx)(t) = sα(Lx)(s) − x1sα−1 + x2sα−1, 1 < α < 2

Here x1 = x(0), x2 = x′(0).

Definition 2.7. The Laplace transform of Mittag-Leffler functions are
given by

L{Eα(λtα)} =
sα−1

sα − λ
, (R(s) > |λ|

1
α ), (7)

L{tβ−1Eα,β(λtα)} =
sα−β

sα − λ
, (R(s) > |λ|

1
α ), (8)

where t ≥ 0, λ ∈ R.

Lemma 2.8. [8] Let 0 < α < 2, β be a an arbitrary complex number
and µ be an arbitrary real number such that πα

2 < µ < min{π, πα}. Then,
for an arbitrary integer p ≥ 1, we have the following expansions:

Eα,β(z) =
1
α

z(1−β)/αexp(z1/α) −
p∑

k=1

z−k

Γ(β − αk)
+ O(|z|−1−p), (9)

53



Mapana Journal of Sciences, Vol. 17, No. 3 ISSN 0975-3303

when | arg(z)| ≤ µ and |z| → ∞;

Eα,β(z) = −

p∑
k=1

z−k

Γ(β − αk)
+ O(|z|−1−p), (10)

when µ ≤ | arg(z)| ≤ π and |z| → ∞.

In particular, if β = 1, then we have

Eα(z) = −

p∑
k=1

z−k

Γ(1 − αk)
+ O(|z|−1−p),

when µ ≤ | arg(z)| ≤ π and |z| → ∞.

Definition 2.9. Consider the following fractional differential system

CDαx(t) = Ax(t), (11)

with initial value x(0) = x0 = (x10, x20, . . . , xn0)T ,where x = (x1, x2, . . . , xn)T , α ∈
(0, 2) and A ∈ Rn×n. The autonomous system (12) is said to be

(i) stable iff for any x0, there exists ε > 0 such that ||x(t)|| ≤ ε for t ≥ 0,

(ii) asymptotically stable iff lim
t→∞
||x(t)|| = 0.

3. Stability Analysis of Linear Differential System

In this section, we consider the following linear fractional differential
system with Caputo fractional derivative

CDαx(t) = Ax(t), (0 < α < 1) (12)

with initial value x(0) = x0 = (x10, x20, . . . , xn0)T ,where x = (x1, x2, . . . , xn)T ,
and A ∈ Rn×n. We shall analyze the stability of (12) with non-zero ini-
tial conditions.

Theorem 3.1. [1] If all the eigenvalues of A satisfy

| arg(λ(A))| >
απ

2
, (13)

then the zero solution of the system (12) is asymptotically stable.
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Proof. Solution of the system (12) can be found by using Laplace
Transform technique. Taking Laplace transform on both sides we get,

X(s)sα − sα−1x0 = AX(s),whereX(s) = Lx(t) (14)

By taking inverse Laplace transform of the abov equation , we obtain

L−1{X(s)} = L−1{
x0

sαI − A
}

It immediately follows from the definition 4, the solution of system is
x(t) = Eα(Atα)x0

Case 1: First, suppose the matrix A is diagonalizable. Then there
exists an invertible matrix T such that D = T−1AT = diag(λ1, . . . , λn).
Then, Eα(Atα) = T Eα(Dtα)T−1 = Tdiag[Eα(λ1tα), . . . , Eα(λntα)]T−1. Ap-
plying the lemma and definition, we get
Eα(λitα) = −

∑p
k=1

λi(tα)−k

Γ(1−αk) + O(|z|−1−p),→ zeroast → ∞.
As a result, ||Eα(Atα)|| = ||Eα(λ1tα), Eα(λ2tα), · · · , Eα(λntα)|| → 0. Hence
the conclusion holds.

Case 2 Next, suppose the matrix A is similar to a Jordan canonical
form, i.e., there exists an invertible matrix T such that J = T−1AT =

diag(J1, . . . , Jr), where Ji, i ≤ i ≤ r has the following form

Ji =


λi 1

λi
. . .
. . . 1

λi


ni×ni

and
∑r

i=1 ni = n. Obviously,

Eα(Atα) = Tdiag[Eα(J1tα), . . . , Eα(Jrtα)]T−1,
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where for 1 ≤ i ≤ r,

Eα(Jitα) =

∞∑
k=0

(Jitα)k

Γ(αk + 1)
=

∞∑
k=0

(tα)k

Γ(αk + 1)
Jk

i

=

∞∑
k=0

(tα)k

Γ(αk + 1


λk

i C1
kλ

k
i · · · Cni−1

k λk−ni+1
i

λk
i

. . .
...

. . . C1
kλ

k
i

λk
i



=



∞∑
k=0

(λitα)k

Γ(αk+1)

∞∑
k=0

(tα)k

Γ(αk+1)C
1
kλ

k
i · · ·

∞∑
k=0

(tα)k

Γ(αk+1)C
ni−1
k λk−ni+1

i

∞∑
k=0

(λitα)k

Γ(αk+1)λi
. . .

...

. . .
∞∑

k=0

(tα)k

Γ(αk+1)C
1
kλ

k
i

∞∑
k=0

(λitα)k

Γ(αk+1)


(C j

k, 1 ≤ j ≤ ni − 1 are the binomial coefficients)

=


Eα(λitα) 1

(1)!

(
d

dλi

)
Eα(λitα) · · · 1

(ni−1)!

(
d

dλi

)ni−1
Eα(λitα)

Eα(λitα)
. . .

...
. . . 1

(1)!

(
d

dλi

)
Eα(λitα)

Eα(λitα)


.

We shall now show that if |arg(λ(A))| ≥ απ/2, then we have |Eα(λiθ
α)| →

0 and
∣∣∣∣∣ 1
(n−1)!

(
d

dλi

)ni−1
Eα(λitα)

∣∣∣∣∣→ 0 1 ≤ i ≤ n, 1 ≤ j ≤ ni − 1.

These can be seen from the following:
Eα(λitα) = −

∑∞
k=1

(λitα)−k

Γ(1−αk) + O(|λitα|−1−p),→ zero as t → ∞.∣∣∣∣∣ 1
(n−1)!

(
d

dλi

)ni−1
Eα(λitα)

∣∣∣∣∣ =
∣∣∣∣ 1

j!

(
d

dλi

) j∣∣∣∣ {−∑p
k=2

(λitα)−k

Γ(1−αk) + O(|λitα|)−1−p
}

= −
∑p

k=2
(−1) j(k+ j−1)···(k+1)kλ−k− j

i t−alphak

j!Γ(1−αk) + O(|λi|
1−p− j|tα|−1−p)

= −
∑p

k=2
(−1) j(k+ j−1)!λ−k− j

i t−alphak

j!Γ(1−αk) + O(|λi|
1−p− j|tα|−1−p)

This leads to
∣∣∣∣∣ 1
(n−1)!

(
d

dλi

)ni−1
Eα(λitα)

∣∣∣∣∣→ 0 as t → ∞. �

Consider the following linear system with Caputo fractional derivative

CDαx(t) = Ax(t), (1 < α < 2) (15)

with initial value x(0) = x0 = (x10, x20, . . . , xn0)T , x′(0) = x1 = (x11, x21, . . . , xn1)T ,
where x = (x1, x2, . . . , xn)T , and A ∈ Rn×n.
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We shall analyze the stability of (15) with non-zero initial conditions.
Taking Laplace Transform on (15)

X(s)sα − sα−1x0 − sα−2x1 = AX(s),whereX(s) = Lx(t)

By taking inverse Laplace transform of the above equation , we obtain It
immediately follonws from the definition 4, the solution of system is

x(t) = Eα(Atα)x0 + Eα,2(Atα)x1

Theorem 3.2. [1] If all the eigenvalues of A satisfy

| arg(λ(A))| >
απ

2
, (16)

then the zero solution of the system (15) is asymptotically stable.

Same as previous theorem, we may analyze the system (15).

4. Analysis of Region of Stability

From the above theorem we may conclude the following results and
it may be verified by the examples.

1. If α ≤ 1, region of instability is smaller than region of stable.

2. If α > 1, unstable region is larger than stable region.

3. If α = 2, all stability disappear except for negative real axis and
the system is oscillatory.

4. If α > 2, the given system is unstable. The argument condition
is |arg(λ)| > απ

2 , we know that arg(λ) = tan−1(y/x), here λ = x+ iy.
It may be noted that range of tan inverse lies between −π2 to
f racπ2 . Hence the argument condition |arg(λ)| > απ

2 does not
hold for α > 2.

5. Examples

Example 5.1. Consider the following linear system CDαx(t) = Ax(t),

0 < α ≤ 2, where A =

[
−1 −1
3 2

]
.
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Figure 1: Stability Region for 0 < α < 1

Figure 2: Stability Region for 1 < α < 2

Characteristic equation is given by w2 − w + 1 = 0, whose roots
are given by w =

1i
√

(3)
2 . Stability of the given system can be found by

analyzing eigenvalues of the matrix A. Here, arg(w1) = −π3 , arg(w2) =
π
3 . Hence |argw| = π

3 . Stability of the given system is examined for
different values of α.
Case 1: When α = 1/4, then π

3 > π
8 . i. e., condition argw > απ

2 is
satisfied. Hence the given system is stable. This can be seen in Figure
3.
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Figure 3: Stable for α = 1/4

Case 2: When α = 1/3, then π
3 > π

6 . i. e., condition argw > απ
2 is

satisfied. Hence the given system is stable. This can be seen in Figure

58



S. Priyadharsini Stability of Fractional Linear Systems

4.
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Figure 4: Stable for α = 1/3

Case 3: When α = 1/2, then π
3 > π

4 . i. e., condition argw > απ
2 is

satisfied. Hence the given system is stable. This can be seen in Figure
5.
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Figure 5: Stable for α = 1/2

Case 4: When α = 2/3, then π
3 = απ

2 . i. e., condition argw > απ
2 is

satisfied. Hence the given system is oscillatory. This can be seen in
Figure 6.
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Figure 6: Oscillatory for α = 2/3

Case 5: When α = 3/4, then π
3 < 3π

8 . i. e., condition argw > απ
2 is
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not satisfied. Hence the given system is unstable. This can be seen in
Figure 7.

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4
x 10

8

t

y(
t)

Unstable for α=3/4

 

 
y

1
(t)

y
2
(t)

Figure 7: Unstable for α = 4/4

Case 6: When α = 1, then π
3 < π

2 . i. e., condition argw > απ
2 is not

satisfied. Hence the given system is unstable. This can be seen in
Figure 8.
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Figure 8: Unstable for α = 1

Case 7: When α = 4/3, then π
3 <

απ
2 . i. e., condition argw > απ

2 is not
satisfied. Hence the given system is oscillatory. This can be seen in
Figure 9.
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Figure 9: Unstable for α = 4/3

60



S. Priyadharsini Stability of Fractional Linear Systems

Case 8: When α = 3/2, then π
3 <

3π
4 . i. e., condition argw > απ

2 is
not satisfied. Hence the given system is unstable. This can be seen in
Figure 10.
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Figure 10: Unstable for α = 3/2

Case 9: When α = 2, then π
3 < π. i. e., condition argw > απ

2 is not
satisfied. Hence the given system is unstable. This can be seen in
Figure 11.
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Figure 11: Unstable for α = 2

By using the theorem, the following results have been concluded.
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Table 1: Stability Results when 0 < α ≤ 2

α 1
4

1
3

1
2

2
3

3
4

απ
2

π
8

π
6

π
4

π
3

3π
8

Argument arg(w) arg(w) arg(w) arg(w) arg(w)
Condition > απ

2 > απ
2 > απ

2 = απ
2 < απ

2
Stability Stable Stable Stable Oscillatory Untable

α 1 4
3

3
2 2

απ
2

π
2

2π
3

3π
4 π

Argument arg(w) arg(w) arg(w) arg(w)
Condition < απ

2 < απ
2 < απ

2 < απ
2

Stability Unstable Unstable Unstable Unstable

Example 5.2. Consider the following linear system CDαx(t) = Ax(t),

0 < α ≤ 2, where A =

[
1 3
−1 −2

]
.

Characteristic equation is given by w2 + w + 1 = 0, whose roots are
given by w =

−1i
√

(3)
2 . Stability of the given system can be found by

analyzing eigenvalues of the matrix A. Here, arg(w1) = 5π
6 , arg(w2) =

7π
6 . Hence |argw| = 5π

6 . Stability of the given system is examined for
different values of α.
Case 1: When α = 1/4, then 5π

6 > π
8 and 7π

6 > π
8 . i. e., condition

argw > απ
2 is satisfied. Hence the given system is stable. This can be

seen in Figure 12.
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Figure 12: Stable for α = 1/4

Case 2: When α = 1/3, then 5π
6 > π

6 and 7π
6 > π

6 . i. e., condition
argw > απ

2 is satisfied. Hence the given system is stable. This can be
seen is 13.
Case 3: When α = 1/2, then 5π

6 > π
4 and 7π

6 > π
4 . i. e., condition

argw > απ
2 is satisfied. Hence the given system is stable. This can be

seen is 14.
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Figure 13: Stable for α = 1/3
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Figure 14: Stable for α = 1/2

Case 4: When α = 2/3, then 5π
6 > π

3 and 7π
6 > π

3 . i. e., condition
argw > απ

2 is satisfied. Hence the given system is stable. This can be
seen is 15.

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

8

t

y(
t)

Stable for α=2/3

 

 
y

1
(t)

y
2
(t)

Figure 15: Stable for α = 2/3

Case 5: When α = 3/4, then 5π
6 > 3π

8 and 7π
6 > 3π

8 . i. e., condition
argw > απ

2 is satisfied. Hence the given system is stable. This can be
seen is 16.
Case 6: When α = 1, then 5π

6 > π
2 and 7π

6 > π
2 . i. e., condition

argw > απ
2 is satisfied. Hence the given system is stable. This can be

seen is 17.
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Figure 16: Stable for α = 3/4
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Figure 17: Stable for α = 1

Case 7: When α = 4/3, then 5π
6 = απ

2 and 7π
6 > απ

2 . i. e., condition
argw = απ

2 is satisfied. Hence the given system is Oscillatory. This can
be seen is 18.
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Figure 18: Oscillatory for α = 4/3

Case 8: When α = 3/2, then 5π
6 < 3π

4 and 7π
6 < 3π

4 . i. e., condition
argw > απ

2 is not satisfied. Hence the given system is unstable. This
can be seen is 19.
Case 9: When α = 2, then 5π

6 < π and 7π
6 < π. i. e., condition argw > απ

2
is not satisfied. Hence the given system is unstable. This can be seen
is 20.
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Figure 19: Unstable for α = 3/2

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4
x 10

22

t

y(
t)

Unstable for α=2

 

 
y

1
(t)

y
2
(t)

Figure 20: Unstable for α = 2

By using the theorem, the following results have been concluded.

6. Conclusion

In this paper, some interesting linear fractional differential equations
arising in real life have been solved. It is observed that stability re-
gions not only depend on eigenvalues but also depend on the order
of the system. We derived an approximate stability condition for lin-
ear fractional system.The properties of the Mittag-Leffler functions
are used to deduce the result. Examples were given and its solutions
were obtained using the numerical method and Matlab, we can con-
clude that these solutions are in excellent agreement with the exact
solution and show that these approaches can solve the problem effec-
tively.
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