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L(t, 1)-Colouring of Cycles
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Abstract

For a given finite set T including zero, an L(t, 1)-colouring
of a graph G is an assignment of non-negative integers
to the vertices of G such that the difference between the
colours of adjacent vertices must not belong to the set T
and the colours of vertices that are at distance two must be
distinct. For a graph G, the L(t, 1)-span of G is the mini-
mum of the highest colour used to colour the vertices of a
graph out of all the possible L(t, 1)-colourings. We study
the L(t, 1)-span of cycles with respect to specific sets.
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1. Introduction

The concept of graph colouring finds its use in the optimal assign-
ment of radio frequencies to radio stations in a specific region. The
first kind of channel assignment problem was brought into picture by
Metzger[4]. The T-colouring problem introduced by Hale[3] is one
of the first types of graph colouring used in radio channel assign-
ment. In this colouring, the vertices must be assigned colours in such
a way that the difference of colours of any two neighbouring vertices
should not belong to the given set T. Later, Roberts[8] in his private
communication with Griggs proposed that the disturbance in trans-
mission of signals is not only due to neighbouring transmitters but
also due to the transmitters at distance 2. This led to the study of L(2,
1)-colouring. Labelling vertices of graphs at distance 2 was studied
extensively by Griggs and Yeh[10].
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We introduced another type of colouring called L(t, 1)-colouring
which finds its foundation in T-colouring and L(2, 1)-colouring[6]
and studied the L(t, 1)-colouring of Wheel Graphs in [7]. One of the
major difficulties when it comes to colour any graph when the set T
comes in picture is the random gaps in the set T. The randomness of
the set T makes it tough to work on bound related problems for graph
of larger size.

In this work we study the bounds for L(t, 1)-span of cycles [5]. All
standard definitions and notations related to graphs are according to
[9].

2. L(t, 1)-span of Paths and Cycles

L(t, 1)-colouring is defined as follows.

Definition 2.1. Let G=(V, E) be a graph and let d(u, v) be the distance
between the vertices u and v of G. Let T be a finite set of non-negative
integers containing 0. An L(t, 1)-colouring of a graph G is an assignment
c of non-negative integers to the vertices of G such that |c(u) − c(v)| < T
if d(u, v) = 1 and c(u) , c(v) if d(u, v) = 2[6].
Definition 2.2. [6] For a graph G with a given set T and all the L(t,
1)-colourings c of G, L(t, 1)-span of G denoted by the symbol λt,1(G) is

λt,1(G) = min { max
u,v∈V(G)

{|c(u) − c(v)|}} (1)

Next, we find the bounds of L(t, 1)-span of cycles for some specific
sets T.

The following lemma is very trivial.

Lemma 2.3. A minimum of three colours are required to colour any
connected graph G with n ≥ 3 in L(t, 1)-colouring.
Theorem 2.4. For a finite set T of even numbers containing 0 and 2 the
L(t, 1)-span of the cycles of length n ≥ 3 is given by

λt,1(Cn) =


3 if n ≡ 0(mod 4)
cσ if n ≡ 1(mod 4)
5 if n ≡ 2(mod 4)
cσ if n ≡ 3(mod 4)

where cσ = least even integer not occurring in set T.
Furthermore, if 2 < T then,

λt,1(Cn) =


2 if n ≡ 0(mod 3)
3 if n ≡ 1(mod 3)

a if n ≡ 2(mod 3)

a = 5 if 4 ∈ T
a = 4 if 4 < T
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Proof. We prove the theorem in two parts. In the first part, let us as-
sume that T contains 0 and 2. Let the vertices of the cycle be labelled
as v1, v2, . . . , vn−1, vn, v1. Let f be the colouring function defined from
V(G)→ N ∪ {0}.

Case 1: n ≡ 0 (mod 4)
The following colouring gives the least possible L(t, 1)-colouring.

f (vi) =


0 if i ≡ 1(mod 4)
1 if i ≡ 2(mod 4)
2 if i ≡ 3(mod 4)
3 if i ≡ 0(mod 4)

By this colouring, the vertices that are adjacent will have the colour
difference 1 or 3 which is not a part of set T and the vertices which are
at distance 2 will get distinct colours. Figure 1 shows the colouring
for such a graph.

3
vn

0
v1

1
v2

2
v3

3
v4

Figure 1: L(t, 1)-colouring of cycle Cn for n ≡ 0(mod 4)

Case 2: n ≡ 1 (mod 4)
The colouring given below gives the least possible L(t, 1)-colouring
for all vertices of the cycle for 1 ≤ i ≤ n − 1.

f (vi) =


0 if i ≡ 1(mod 4)
1 if i ≡ 2(mod 4)
2 if i ≡ 3(mod 4)
3 if i ≡ 0(mod 4)

and

f (vn) = cσ

where cσ is the least even integer not occurring in the set T. Here,
we see that | f (vi) − f (vi+1)| = 1 for 1 ≤ i ≤ n − 2. Therefore, none
of the adjacent vertices {vi, vi+1} for 1 ≤ i ≤ n − 2 would have colour
difference an even number.
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2
vn−3

3
vn−2

4
vn−1

5
vn

0
v1

1
v2

Figure 2: L(t, 1)-colouring of cycle Cn for n ≡ 2(mod 4)

Moreover, | f (vn−1) − f (v1)| = |cσ − 3|, which is an odd number and
| f (vn) − f (v1)| = |cσ − 0| = cσ. Hence for adjacent vertices f gives a
colouring such that colour difference does not belong to T.

For vertices at distance 2, | f (vi) − f (vi+2)| = 2 for 1 ≤ i ≤ n − 3,
| f (vn−2) − f (vn)| = |2 − cσ| which is at least 2. Also, | f (vn−1) − f (v1)| =
|3 − 0| ≥ 1 and | f (vn) − f (v2)| = |cσ − 1| ≥ 3 ≥ 1.

Case 3: n ≡ 2 (mod 4)
The colouring given below gives the least possible L(t, 1)-colouring
for all vertices of the cycle for 1 ≤ i ≤ n − 2.

f (vi) =


0 if i ≡ 1(mod 4)
1 if i ≡ 2(mod 4)
2 if i ≡ 3(mod 4)
3 if i ≡ 0(mod 4)

and

f (vi) =

4 if i = n − 1
5 if i = n

We can give the same argument as in case 1 for vertices vi, 1 ≤ i ≤
n − 2. From the Figure 2, f (vn−3) = 2, f (vn−2) = 3, f (vn−1) = 4, f (vn) =
5, f (v1) = 0, f (v2) = 1. Hence the above colouring f justifies the con-
dition for L(t, 1)-colouring.

Case 4: n ≡ 3 (mod 4)
The colouring given below gives the least possible L(t, 1)-colouring
for all vertices of the cycle for 1 ≤ i ≤ n − 1.

f (vi) =


0 if i ≡ 1(mod 4)
1 if i ≡ 2(mod 4)
2 if i ≡ 3(mod 4)
3 if i ≡ 0(mod 4)
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and

f (vn) = cσ

In this colouring adjacent vertices have colour difference an odd num-
ber and non-adjacent vertices have distinct colours. This concludes
the proof of the first part.

In the second part of the proof, let us consider the situation that
2 < T . The proof is obtained by considering three cases.

Case 1: n ≡ 0 (mod 3)
Let the colouring be given as follows

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)

As 2 < T , the above colouring implies that the colour difference of
adjacent vertices and vertices at distance 2 are either 1 or 2. Hence it
is an optimal L(t, 1)-colouring since we are using the colours 0, 1 and
2.

Case 2: n ≡ 1 (mod 3)
For 1 ≤ i ≤ n − 1, the colouring is given below.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)

and

f (vn) = 3

The vertices which are adjacent will have the colour difference 1 or
3 which are not a part of set T and the vertices which are at distance
2 will get distinct colours. For vn neither 0 nor 2 would fit in as they
are the colours of the adjacent vertices. For the two vertices which
are at the distance 2 from vn f assigns the colour 1. Hence vn is
forced to have the colour 3, which is the least number satisfying the
condition for L(t, 1)-colouring. Hence f gives the least possible L(t,
1)-colouring.

Case 3: n ≡ 2 (mod 3)
The colouring given below gives the least possible L(t, 1)-colouring
for all vertices of the cycle for 1 ≤ i ≤ n − 2.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)
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Here, (n− 1)th and nth vertices can be coloured depending on the pres-
ence of element 4 in the set T.
If 4 ∈ T then,

f (vi) =

3 if i = n − 1
5 if i = n

Since, | f (vi) − f (vi+1)| ∈ {1, 2, 5} < T for 1 ≤ i ≤ n − 1, f (vi) , f (vi+2)
for 1 ≤ i ≤ n − 2, f (vn−1) , f (v1)and f (vn) , f (v2). Thus we get a least
possible L(t, 1)-colouring.
If 4 < T then,

f (vi) =

3 if i = n − 1
4 if i = n

Here, the vertices which are adjacent will have the colour difference
1 or 4 which are not part of the set T and the vertices which are at
distance 2 will get distinct colours. Hence, the conditions for L(t,
1)-colouring are satisfied. �

Remark 2.5. When 2 < T , span is always less than 5 i.e., the value of
λt,1(Cn) does not depend on the highest value of the set T.

Corollary 2.6. For a finite set T containing 0 and all consecutive even
integers from 2 such that max{T }=r, the L(t,1)-span of the cycles is given
by:

λt,1(Cn) =


3 if n ≡ 0(mod 4)
r + 2 if n ≡ 1(mod 4)
5 if n ≡ 2(mod 4)
r + 2 if n ≡ 3(mod 4)

We consider the case of 0 and odd integers alone.

Theorem 2.7. For a finite set T of odd numbers containing 0 and 1, the
L(t, 1)-span of the cycles for length n ≥ 3 is given by:

λt,1(Cn) =


4 if n ≡ 0(mod 3)
6 if n ≡ 1(mod 3)

a if n ≡ 2(mod 3)

a = 8 if 3 ∈ T
a = 4 if 3 < T

If 1 < T , then

λt,1(Cn) =


2 if n ≡ 0(mod 3)

a if n ≡ 1(mod 3)

a = 4 if 3 ∈ T
a = 3 if 3 < T

4 if n ≡ 2(mod 3)
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Figure 3: L(t, 1)-colouring of cycle Cn for n ≡ 0(mod 4)

Proof. Let the vertices of the cycle be labelled as v1, v2, . . . , vn−1, vn, v1.
Let us assume that T contains 0 and 1. Let f be a function defined
from V(G)→ N ∪ {0}.

Case 1: n ≡ 0 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring.

f (vi) =


0 if i ≡ 1(mod 3)
2 if i ≡ 2(mod 3)
4 if i ≡ 0(mod 3)

Figure 3 shows the colouring for such graph.
Case 2: n ≡ 1 (mod 3)

The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n − 1.

f (vi) =


0 if i ≡ 1(mod 3)
2 if i ≡ 2(mod 3)
4 if i ≡ 0(mod 3)

and

f (vn) = 6

The vertices which are adjacent will get the colours in such a way that
the difference between the colours will be an even number which does
not belong to set T and the vertices which are at distance 2 will get
distinct colours. Any number less than 6 will violate the condition for
L(t, 1)-colouring, so this is the least possible L(t, 1)-colouring.

Case 3: n ≡ 2 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n − 2.

f (vi) =


0 if i ≡ 1(mod 3)
2 if i ≡ 2(mod 3)
4 if i ≡ 0(mod 3)
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2
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Figure 4: L(t, 1)-colouring of cycle Cn for n ≡ 0(mod 4)

Here, (n− 1)th and nth vertices can be coloured depending on the pres-
ence of element 3 in set T.
If 3 ∈ T then

f (vi) =

6 if i = n − 1
8 if i = n

The vertices which are adjacent will get the colours in such a way that
the difference between the colours will be an even number ∈ {2, 8}
which does not belong to set T and the vertices which are at distance
2 will get distinct colours.

If 3 < T then

f (vi) =

1 if i = n − 1
3 if i = n

In this case, the vertices which are adjacent will get the colours in
such a way that the difference between the colours will be an even
number ∈ {2, 3} which does not belong to set T and the vertices which
are at distance 2 will get distinct colours.

Now let us consider the situation that 1 < T . The proof for this is
obtained by considering three cases.

Case 1: n ≡ 0 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)

Figure 4 gives an L(t, 1)-colouring for such graph.
Case 2: n ≡ 1 (mod 3)

The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n − 1.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)
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Here, nth vertex can be coloured depending on the presence of ele-
ment 3 in set T.
If 3 ∈ T then

f (vn) = 4

The vertices which are adjacent will get the colours in such a way that
the difference between the colours will belong to set {1, 4} which does
not belong to set T and the vertices which are at distance 2 will get
distinct colours.

If 3 < T then

f (vn) = 3

Similarly, here the vertices which are adjacent will get the colours in
such a way that the difference between the colours will belong to set
{1, 3} which does not belong to set T and the vertices which are at
distance 2 will get distinct colours.

Case 3: n ≡ 2 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n − 2.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)

and

f (vi) =

3 if i = n − 1
4 if i = n

It is easy to check that the vertices which are adjacent will get the
colours in such a way that the difference between the colours will
be an even number ∈ {1, 4} which does not belong to set T and the
vertices which are at distance 2 will get distinct colours. �

Remark 2.8. Here, λt,1(Cn) does not depend on the highest value r of set
T.

Theorem 2.9. For a finite set T containing 0 and multiples of m where
m ≥ 3,the L(t, 1)-span of the cycles

λt,1(Cn) ≤ 4.
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Proof. Consider a finite set T = {0,m, 2m, 3m, . . . , r}, where r is the
max{T }.

For m=1, L(t, 1)-colouring becomes L(p, q)-colouring, where p=r+1,
and q=1. The bound for which was studied by J. P. Georges and D.
W. Mauro in [2].

For m=2, bound is given in Corollary 1. For m=3, we will show
that the bound is 4 for following three cases.

Let the vertices of cycle be labelled as v1, v2, . . . , vn−1, vn, v1. Let us
assume that T contains elements {0, 3, 6, . . . , r}. Let f be a function
defined from V(G)→ N ∪ {0}.
Case 1: n ≡ 0 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)

The vertices which are adjacent will get the colour with colour differ-
ence 1 or 2 which are not an element of the set T and the vertices
which are at distance 2 will get distinct colours. Since 0, 1, 2 are the
least possible colours therefore it gives an optimal L(t, 1)-colouring.

Case 2: n ≡ 1 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n − 1.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)

and

f (vn) = 4.

The vertices which are adjacent will get the colour with colour differ-
ence 1, 2 or 4 which are not an element of the set T and the vertices
which are at distance 2 will get distinct colours. Thus it gives an op-
timal L(t, 1)-colouring in this case.
Case 3: n ≡ 2 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n − 2.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)
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and

f (vi) =

3 if i = n − 1
4 if i = n

The vertices which are adjacent will get the colour with colour differ-
ence 1 or 4 which are not an element of the set T and the vertices
which are at distance 2 will get distinct colours. Thus it gives an op-
timal L(t, 1)-colouring in this case. Therefore, for m=3, λt,1(Cn) ≤ 4.

For m=4; we will show that the bound is 4 for following three
cases.

Case 1: n ≡ 0 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)

The vertices which are adjacent will get the colour with colour differ-
ence 1 or 2 which are not an element of the set T and the vertices
which are at distance 2 will get distinct colours. Thus it gives an
optimal L(t, 1)-colouring in this case.

Case 2: n ≡ 1 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)

and

f (vn) = 3

The vertices which are adjacent will get the colour with colour differ-
ence 1, 2 or 3 which are not an element of the set T and the vertices
which are at distance 2 will get distinct colours. Thus it gives an
optimal L(t, 1)-colouring in this case.

Case 3: n ≡ 2 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)
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f (vi) =

3 if i = n − 1
4 if i = n

The vertices which are adjacent will get the colour with colour differ-
ence 1 or 4 which are not an element of the set T and the vertices
which are at distance 2 will get distinct colours. Thus it gives an op-
timal L(t, 1)-colouring in this case. Therefore, for m=4, λt,1(Cn) ≤ 4.

For m ≥ 5, We can colour any cycle using the following sequence:
Case 1: n ≡ 0 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)

The vertices which are adjacent will get the colour with colour differ-
ence 1 or 2 which are not an element of the set T and the vertices
which are at distance 2 will get distinct colours. Thus it gives an op-
timal L(t, 1)-colouring in this case.
Case 2: n ≡ 1 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)

and

f (vn) = 3

The vertices which are adjacent will get the colour with colour differ-
ence 1, 2 or 3 which are not an element of the set T and the vertices
which are at distance 2 will get distinct colours. Thus it gives an op-
timal L(t, 1)-colouring in this case.
Case 3: n ≡ 2 (mod 3)
The following colouring gives the least possible L(t, 1)-colouring for
all vertices of cycle for 1 ≤ i ≤ n − 2.

f (vi) =


0 if i ≡ 1(mod 3)
1 if i ≡ 2(mod 3)
2 if i ≡ 0(mod 3)
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and

f (vi) =

4 if i = n − 1
3 if i = n

The vertices which are adjacent will get the colour with colour differ-
ence 1, 2 or 3 which are not an element of the set T and the vertices
which are at distance 2 will get distinct colours. Thus it gives an op-
timal L(t, 1)-colouring in this case. Therefore, λt,1(Cn) ≤ 4. Hence the
result. �

Remark 2.10. λt,1(Cn) does not depend on the highest value r of set T
when the gap between the terms of T starts increasing.

3. Conclusion

In this paper, we found the bounds for L(t, 1)-span of cycles for some
specific set T. The work done in this paper can be extended to various
other classes of graphs, for various set T.
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