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Abstract 

The shuffle operation on strings is a fundamental 
operation, well studied in the theory of formal languages.  
Shuffle on trajectories yields a flexible method to handle 
the shuffle operation on two strings.  In this paper, the 
shuffle on trajectories is extended to the string 
representations of Euler graphs and interesting results are 
obtained. Some algebraic properties such as 
completeness, determinism and commutativity of the 
trajectories involved in this study are provided.  

Keywords: Euler Graph, shuffle operation, literal shuffle, balanced literal 

shuffle 

1. Preliminaries 

Parallel composition of words and languages appears as a 
fundamental operation in parallel computation and in the theory of 
concurrency.  Usually, this operation is modeled by the shuffle 
operation or restrictions of this operation, such as literal shuffle, 
balanced literal shuffle, insertion etc.  A trajectory is a segment of a 
line in plane, starting in the origin of axes and continuing parallel 
with the Ox or Oy.  The line can change its direction only in points 
of nonnegative integer coordinates.  A trajectory defines how to 
switch from a word to another word during the shuffle operation. 
Shuffle on trajectories provides a method of great flexibility to 
                                                        
* Department of Mathematics, Madras Christian College, Chennai 600 059; 
meena_maths@yahoo.com 
† Dept of Mathematics, Madras Christian College; ngdmcc@gmail.com 

https://doi.org/10.12725/mjs.14.6 



Meenakshi Paramasivan and N.G. David                                  ISSN 0975-3303 

64 

 

handle the operation of parallel composition of processes: from the 
catenation to the usual shuffle of processes.  It is natural to consider 
this operation on multi-dimensional structures or more complex 
objects like graphs and networks.  In this section, we review the 
notions required for the development of our study [1, 2, 3]. 

 

Definition 1.1 A linear graph or graph G = (V, E) consists of a set V = 
{v1, v2, …} called vertices and another set E = {e1, e2, …}, whose 
elements are called edges, such that each edge ek is identified with 
an unordered pair (vi, vj) of vertices. The vertices vi, vj associated 
with edge ek are called the end vertices of ek. An edge having the 
same vertex as both its end vertices is called a self-loop. More than 
one edge associated with a given pair of vertices is referred as 
parallel edges. A graph that has neither self-loops nor parallel edges 
is called a simple graph. 

 

Definition 1.2 A walk is defined as a finite alternating sequence of 
vertices and edges, beginning and ending with vertices, such that 
each edge is incident with the vertices preceding and following it. 
No edge appears more than once in a walk. A vertex, however, 
may appear more than once. A walk is closed if it begins and ends 
at the same vertex. A walk that is not closed is called an open walk. 
An open walk in which no vertex appears more than once is called 
a path. A closed walk in which no vertex (except the initial and the 
final vertex) appears more than once is called a circuit or cycle. 

 

Definition 1.3 A closed walk in a graph containing all the edges of 
the graph is called an Euler line and if such a walk exists in a graph, 
then the graph is called an Euler graph. 

 

Definition 1.4 [1] A graph G is said to be in Pseudo-Linear Form 
(PLF) if the ordered vertices {v1,v2,…,vn} are positioned as per the 
order, as if they lie along a line and the edges of the graph drawn 
accordingly. 
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Example 1.5  Let G be the graph in figure 1.  

 

Figure 1 

If the vertices of G are ordered as {v1, v2, v3, v4}, the corresponding 
PLF(G) is in figure 2. 

 

Figure 2 

Note 1.1 A graph in PLF will look like a path graph with edges 
going above or below the linear path.  

Notations  

The set of nonnegative integers is denoted by N.  Let   be a finite 
and nonempty set of symbols called the alphabet and *  denotes 
the set of all words over , including the empty word λ.   

If *,w  then w denotes the length of w.  Note that   = 0.  If 
a  and *w  then wa denotes the number of occurrences of 

the symbol a in w.  If   then  


a a
ww .  

 

Definition 1.6 [1] The shuffle operation, denoted by Ш, is defined 
recursively by   

(auШbv) = a(uШbv)  b(auШv) and (uШλ) = (λШu) = {u}, where 
*, vu and ba, . 
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Example 1.7 abШbc = {abbc, abcb, babc, bacb, bcab}. 

Definition 1.8 [1] The literal shuffle, denoted by Шl, is defined as  

naaa 21 Шl mbbb 21 = 








nmmm

mnnn

aabababa
bbbababa




12211

12211  
if
if

,
,

nm
mn




  where ,, ji ba
 

and (u Шl λ) = (λ Шl u) = {u}, where .*u  

Example 1.9 aba Шl bc = {abbca}. 

 

Definition 1.10 [1] The balanced literal shuffle, denoted by Шbl, is 
defined as  

naaa 21 Шbl mbbb 21 = 





nnbababa 2211  
if
if

,
,

mn
mn




  

where ., ji ba  

Definition 1.11 [1] The insertion operation denoted by , is defined 
as  

*}.,,/{   whereuvvu  

Example 1.12 }.,,{ abbcabcbbcabbcab   

Definition 1.13 [1] The balanced insertion, denoted by b, is defined 
as *}.,,,,/{  vuwherevuandvuuvb    

In a balanced insertion vu b , both u and v have to be of even 
length. 

 

Example 1.14 }.{abcbbcab b   
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Definition 1.15 [1] Consider the alphabet }.,{ urV   It can be said 
that r and u are versors in the plane, r stands for the right direction, 
and u stands for the up direction.  A trajectory is an element .*Vt    
Sets T of trajectories, *VT   are also considered.  

Let be an alphabet and let t  be a trajectory, ,21 ntttt  where 
,Vti   .1 ni . Let ,  be two words over  , ,21 paaa   

,21 qbbb   where ,, ji ba  pi 1  and .1 qj    

 

Definition 1.16 [1] The shuffle of   with  on the trajectory t, 
denoted by  Ш t , is defined as follows: if 

r
t  or 

u
t , 

then  Ш , t  else  

 Ш ,21 qpt ccc   where, if 1121 kttt
ri   and 

,2121 kttt
ui  then  












1

1

2

1

k

k
i b

a
c  

if
if

.
,

ut
rt

i

i




 

If T V* is a set of trajectories, the shuffle of with on the set T of 

trajectories, [1] denoted  Ш T , is  Ш 
Tt

T


  Шt  . 

Example 1.17 Let and  be the words ,87654321 aaaaaaaa

54321 bbbbb and assume that .323 ururururt   The shuffle of
with on the trajectory t is 

 Ш }.{ 5847365421321 bababaaabbaaat   

The result has the following geometrical interpretation.  
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Figure 3 

 

The trajectory t defines a line starting in the origin and continuing 
one unit to the right or up, depending on the definition of t. In our 
case, first there are three units right, then two units up, then three 
units right, etc. Assign on the Ox axis and  on the Oy axis of the 
plane. Observe that the trajectory ends in the point with 
coordinates (8,5) denoted by E in figure 3, that is exactly the upper 
right corner of the rectangle defined by and , i.e., the rectangle 
OAEB in figure 3. Hence, the result of the shuffle of with on the 
trajectory t is nonempty.  

The result can be read following the line defined by the trajectory t: 
that is, when being in a lattice point of the trajectory, with the 
trajectory going right, one should pick up the corresponding letter 
from , otherwise, if the trajectory is going up, then one should 
add to the result the corresponding letter from .  

Hence, the trajectory t defines a line in the rectangle OAEB, on 
which one has “to walk” starting from the corner O, the origin, and 
ending in the corner E, the exit point. In each lattice point, one has 
to follow one of the versors r or u, according to the definition of t. 

Assume now that t is another trajectory, say .235 ruruurt    In 
figure 3, the trajectory t is depicted by a much bolder line that the 
trajectory t.  Observe that  Ш }.{ 8756432543211 aababbbaaaaabt    
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Consider the set of trajectories, }.,{ ttT   

The shuffle of with  on the set T of trajectories is 

 Ш }.,{ 87564325432115847365421321 aababbbaaaaabbababaaabbaaaT   

 

Definition 1.18 [1] 

(i)  A set T of trajectories is complete if and only if  Ш  T  
for all .*,   

(ii)  A set T of trajectories is deterministic if and only if (card
Ш ,1) T for all .*,   

(iii)  A set T of trajectories is referred to as commutative if and 
only if the operation ШT  is a commutative operation, i.e.,  Ш T =
 Ш T  for all .*,   

Example 1.19 

(i) (a) Shuffle, Catenation, insertion are complete sets of 
trajectories. 

(b) Non complete sets of trajectories are, for instance, 
balanced literal shuffle, balanced insertion, all finite sets of 
trajectories. 

(ii)  (a) Catenation, balanced literal shuffle, balanced insertion 
are deterministic sets of trajectories. 

(b) Nondeterministic sets of trajectories are, for instance, 
shuffle and insertion. 

(iii) (a) Shuffle is a commutative set of trajectories. 

(b) Noncommutative sets of trajectories are, for instance, 
catenation and insertion. 

2. Shuffle operations on Euler Graphs 
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In this section we define string Euler graph, standard form of string 
Euler graph and study the shuffle operation on the family of string 
Euler graphs. 

 

Definition 2.1 Consider the Pseudo-Linear Form PLF(G) of an 
Euler graph G. Trace an Euler line in PLF(G) and name an edge 
from vp to vq as ai if p < q and q - p = i, as bj if p > q and p - q = j. The 
sequence of edges labeled by ai and bj, in tracing an Euler line is the 
string Euler graph of G, denoted by SG. 

It is clear that given an SG, the corresponding Euler graph can be 
constructed upto isomorphism. 

 

Definition 2.2 Consider an Euler graph G, label a vertex as v1 
arbitrarily. Trace an Euler line from v1: v1e1…vqeqv1 where 
v1,…,vqV. Order the vertices of G in such a way that the vertex vq 
receives the label vn. Now the SG corresponding to this ordering is 
said to be in standard form. 

 

 

Observation 2.3 If SG = x1  x2 … xq, with xr  {ai, bj /  1  i, j  q}, 1  r 
 q, then 

 
ji ba

ji
. 

 

If SG = x1  x2 … xq, and if xl = bj for some l,  we have 







lk
xa ki

ij
. 
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Example 2.4 Let G be an Euler graph in figure 4. 

 

Figure 4 

 

The PLF(G) is represented in figure 5. 

 

 
Figure 5 

 

The corresponding string Euler graph SG = a1a1a1b2a3b4. 

 

Definition 2.5  Let G1 and G2 be two Euler Graphs and let 
their respective string Euler graphs be 

1GS and
2GS .  

i. The Graphs represented by each string in 
1GS Ш 

2GS are 

called as ‘shuffled Euler graphs’. 
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ii. The graph represented by the single string in 
1GS  Шl 

2GS is 
called as ‘literally shuffled Euler graph’. 

iii. The graph represented by the single string in 
1GS  Шbl 

2GS is 

called as ‘balanced literally shuffled Euler graph’. 

 

Example 2.6 Let G1 and G2 be two Euler Graphs given in figure 6. 

 

Figure 6 

 

There corresponding PLF(G1), PLF(G2) are represented in figure 7. 

 

 

Figure 7 

Here, 
1GS =  a1a1a1a1a1b2b2a4b5  and 

2GS =  a1a1a1b2a3b4 with 9
1
GS  

and 6
2
GS . 

Therefore, 
1GS Ш 

2GS = a1a1a1a1a1b2b2a4b5 Ш a1a1a1b2a3b4 
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= 








,
,,

542211111432111

542423121111111432111542211111

babbaaaaababaaa
babbbaabaaaaaaababaaababbaaaaa . 

We notice that n (
1GS Ш 

2GS ) = 615C  = 5005 and for each x 
1GS Ш 

bl 
2GS , 15x . 

Also, 
1GS Ш l 

2GS =  542423121111111 babbbaabaaaaaaa . 

Example 2.7  Let G1 and G2 be two Euler Graphs given in figure 8. 

 

 

Figure 8 

 

There corresponding PLF(G1), PLF(G2) are represented in figure 9. 

 

 

Figure 9 
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Here, 
1GS =  a1a1a1b2a3b4 and 

2GS = a1a1a1 a1a1b5 with 6
1
GS and 

6
2
GS . 

Therefore, 
1GS Ш bl 

2GS =  541312111111 bbaaabaaaaaa . 

Theorem 2.8 Each element in the set 
1GS Ш 

2GS is an Euler graph. 

Proof: Let G1 and G2 be two Euler graphs and let PLF(G1), PLF(G2) 
be their  corresponding Pseudo-Linear Forms.  

Trace an Euler line in PLF(G1) and PLF(G2).  Obtain their respective 
string Euler graphs 

1GS and
2GS .  By observation 2.3, we have

 
ji ba

ji  for both 
1GS and

2GS . 

Hence the shuffled string graphs will also preserves this property 
implying that the resultant graphs are Euler.  

Therefore, each element in the set 
1GS Ш 

2GS is an Euler graph. 

Remark 2.9  

(i) The literal shuffle of  
1GS and 

2GS , 
1GS Ш 

2GS is an Euler graph  

(ii)  The balanced literal shuffle of  
1GS and 

2GS , 
1GS  Шbl 

2GS is an 

Euler graph.  

3. Some algebraic properties 

 In this section, we investigate some of the algebraic 
properties of the trajectories associated with string Euler graphs. 

Example 3.1  Let 5422111111
babbaaaaaSG  and 

2GS 432111 babaaa  

be two string Euler graphs.  Assume a trajectory urururt 23423 . 
The shuffle of 

1GS with
2GS on the trajectory t is 

1GS Шt 

 4543212211111112
bbaababbaaaaaaaSG  . 
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Theorem 3.2  Let G1 and G2 be two simple Euler graphs and their 
respective standard string Euler graphs be 

1GS and 
2GS with 

pSG 
1

and qSG 
2

. The string Euler graphs in 
1GS Ш

2GT S

represent simple Euler graphs for  ttT  , , where urut pq 1 and 
rurt qp 1 . 

 

Proof: Let G1 and G2 be two simple Euler graphs, 
1GS and

2GS be 

their corresponding standard string Euler graphs, with pSG 
1

and qSG 
2

.   

Since we consider only simple graphs which are Euler, there is no 
possibility of the occurrence of the pair (ai, bj) such that i and j have 
the same value in 

1GS and
2GS .   

Consider the two trajectories, 

urut pq 1 , 

rurt qp 1 . 

Perform the shuffle using the above two trajectories. As observed 
earlier the two shuffled string graphs obtained have no possibility 
of the occurrence of the pair (ai , bj) such that i and j have the same 
value. 

Thus, the graphs in 
1GS Ш

2GT S are simple Euler graphs. 

Theorem 3.3  If  ttT  , , as given in the above theorem, then  

(i) T is complete. 

(ii) T is not deterministic. 

(iii) T is commutative. 
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Proof The proof of (i) follows from its definition. The set of 
trajectories  ttT  ,  is not deterministic and commutative as 
observed in the below example which implies the proof of (ii) and 
(iii). 

Example 3.4 Let G1 and G2 be two simple Euler Graphs given in 
figure 10. 

 

Figure 10 

 

There corresponding PLF(G1), PLF(G2) are represented in figure 11. 

 

 

 

Figure 11 

 

Here, 
1GS =  a1a1a1a1a1b2b2a4b5  and 

2GS =  a1a1b2a3a1b4 with 9
1
GS  

and 6
2
GS . 



Mapana J Sci, 10, 1(2011)                                 Shuffle Operations on Euler Graphs 

 

77 

 

Let  ttT  , , as given in the theorem 3.2 that is urut pq 1 , 
rurt qp 1  then urut 95 , rurt 68 . 

1GS Ш
2GT S },{ 541321142211111454221111113211 bbaabaaabbaaaaabbabbaaaaaaabaa . 

Similarly, for 
2GS Ш

1GT S by theorem 3.2, urut 68 , rurt 95 . 

2GS Ш
1GT S },{ 454221111113211541321142211111 bbabbaaaaaaabaabbaabaaabbaaaaa . 

The graphs for the strings in 
1GS Ш

2GT S = 
2GS Ш

1GT S are given in the 

figures 12 and 13. 

 

Figure 12 

 

Figure 13 

We observe that the above graphs are simple Euler graphs as given 
in the theorem 3.2. 
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